

Ecteric Encamional Srrids:

II.
onafac-
troduc-
at the

Cumell elnivexsity Cifuray

mar
in tl

ing

among y. Its houses mepart raluuriable o hive s to be o matkep data, and make-np. A strong point with this house is also to sull the best works, in matter, printing, illustration, and binding. at lower prices than are usually charged for books that are ordinary or interior in these respects.
"Their Cincinnati establishment is one of the largest and most perfectly equipped institutions of the kind in the country. The works issued from it are noted for their high degree of perfection. The materinl is superion, the type work is very fine, and the binding is stronst and durable. All their books show the intmost care, skill, and intelligence in the work of prepara. tion."-St. Louis Republican.

[^0]
ECLECTIC EDUCATIONAL SERIES.

READING.

McGuffey's New Eclectic Series: McGnfey's New First Reader, McGufleg's New Second Reader, MoGuffey's New Thirl Reader, McGuffey's New Fourth Realer, McG,uffey'e New Fifth Readez, MoGuffoy's New Sixth Reader.

Harvey's Graded-School Series:
Harvey's First Reader,
Harvey's Sesond Reader,
Harvey's Third Reader,
Harvej's Fourth Reader,
Harvey's Fifich Reader,

SPELLING.

MoGuffey's New Spelling-Book, De Wolf's Instrustive Speller,

Harvey's Graded-Soh'l Primary Speller, Henkle's Test Spelling-Book.

PRIMARY READING.

Motuffoy's New Primary Charts, MoGuffey's New Eclectic Primer, MoGuffay's Pictorial Primer, Leigh's Phonetic Primer, Leigh's Phonetic Primary Reader,

Knell \& Jones's Phenetic Reader, Little Teacher (Word Method), Latham's First Less, for Deaf Mutes, Latham's Prim, Reader for Deaf Mutes.

ARITHMETIC.

Ray's Series:

Ray's Primary Arithmetic, Ray's Intellectual Arithmetic, Ray's Radiments of Arithmetic, Ray's Practical Arithmetic Key to Ray's Practical Arithmetio, Ray's Test Examples, Ray's Higher Arithmetic, (Key),

Ray's New Series:
Ray's New Primary Arithmetic. Ray's New Intellectaal Arithmetic, Ray's New Praotical Arithmetic.

White's Graded-School Series :
White's Primary Arithmetic,
White's Intermediate Arithmetic, White's Complete Arithmetic.

ALGEBRA.

Ray's New Elementary Algebra, Ray's New Higher Algebra, Key to Ray's New Algebras,

Sohnyler's Cemplete Algebra, Key to Schayler's Algebra,
nç-Descriptive Circulars and Price-List on application to the Publishers. 匹i:2

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.
http://www.archive.org/details/cu31924031264017

K E Y

то
RAY'S ALGEBRA,

PARTS FIRST AND SECOND :

CONTAINING
statements and solutions of questions,

WITH REMARES AND NOTES.

ALAO,

AN APPENDIX, CONTAINING INDETERMTNATE AND DIOPHANTINE ANALYSIS, PROPERTIES OF NUMBERS, AND SGALES OF NOTATION.

B Y
JOSEPH RAY, M.D.,
PROFESSOR OF MATHEMATICS IN WOODWARD SOHOOL.

VAN ANTWERP, BRAGG \& CO.,

I 37 Walnut Street, CINCINNATI.

28 BondStrett, NEW YORK.

Ray's Séries,

EMBRACING
A Thorough and Progressive Course in Arithmetic, Algebra, and the Higher Mathematics.

Primary Arithunctic.
Intellectual Arithmetic.
lidenments of Arithmetic.
Practical Arithmetic.

Higher Arithmetic.

Test Examples in Arithmetic. Ne iy Elementary Algebra.
New Higher Algebra.

Plane and Solid Geometry. By Eli T. Tappan, A.M., Pres't Kenyon College. 12mo, cloth, 270 pp .
Geometry anell Trigonometry. By Eli T. Tappan, A.M. Pres't Kenyon College. 8ro, sheep, 420 pp .
Analytie Geometry. By Geo. H. Howison, A.M., Prof. in Mras. Institute of Technology. Treatise on Analytic Geometry, especially as applied to the Properties of Conics: including the Modern Methods of Abridged Notation.
Elements of Astronomy. By S. H. Peabody, A.M., Prof. of Physics and Cicil Enginerring, Amherst College. Handsomely and profusely illustrated. $8 v o$, sheep, 336 pp .

1Ray's Ariillmetical Key (To Intellectual and Practical);
Key to Ray's Migher Arithmetie;
Hey to Ray's New Elementary and Higher Algeloras.

The Publishers furnish Desrription Circulars of the above Mathemotical Text-Books, with Piters and other information concerming them.

Faterel aceordiug to det of Congress, in the year Eighteen Hundred and Fifty-Two, by Winmurnt B. Smitu, in the Clerk's Office of the District Court of the U'nited States for the District of Ohio.

K E Y

RAY'S ALGEBRA, PART FIRST.

UT The numbers in parentheses, as seen in the margin of this K_{Ex}, refer to the corresponding number of example, under the same article in the Algebra.

INTELLECTUAL EXERCISES.

To Teachers. As these exercises, except, perhaps, a few in Lesson XIV, can be readily solved without the aid of Algebra, by pupils having a good knowledge of Mental Arithmetic, it is unnecessary to occupy space with their solution.
Some instructors who use the Algebra, pay no attention to the intellectual exercises, but permit their pupils to begin with the preliminary definitions and principles. This course is proper with pupils ol considerable maturity of mind, and whe possess a good knowledge of arithmetic ; but in tbe case of learners generally, and especially those who are young, the intellectual exercises should be thoroughly studied.

$$
\text { Lesson } 14 \text {. }
$$

(33) Let $x=$ the 1st, then $\frac{x}{3}=$ the 2d, and $\frac{x}{3}+2 x=$ the 3d.

Then, $x+\frac{x}{3}+\frac{x}{3}+2 x=44$,
adding, $\quad 3 x+\frac{2 x}{3}=44$,

$$
\begin{gathered}
\frac{11 x}{3}=44 \\
\frac{x}{3}=4 \\
x=12
\end{gathered}
$$

the numbers are 12,4 , and 28.
(34) Let $x=$ the distance from $A: B$; then $\frac{x}{\overline{5}}=$ dist. from B () C; and $x+\frac{x}{5}$ dist. from A to C.

Whence, $\quad 2 x+\frac{2 x}{5}=$ dist. from C to D;
and, $x+\frac{x}{5}+2 x+\frac{2 x}{5}=72$,
or.

$$
\begin{aligned}
& \begin{array}{l}
3 x+\frac{3 x}{5}
\end{array}=72, \\
& \frac{18 x}{5}=72, \\
& \frac{x}{5}=4, \\
& x=20, \text { the distance from } A \text { to } B . \\
& \frac{x}{5}=4, \text { the distance from } B \text { to } C . \\
& 2 x+\frac{2 x}{5}=48, \text { the distance from } C \text { to } D .
\end{aligned}
$$

(85) Let $x=$ the number.

$$
\begin{aligned}
& \text { Then, } \begin{aligned}
& x+\frac{x}{2}+\frac{x}{4}+26=5 x, \\
& \text { or, } \quad \begin{aligned}
x+\frac{3 x}{4}+26 & =5 x, \\
\frac{7 x}{4}+26 & =\frac{20 x}{4}, \\
26 & =\frac{13 x}{4}, \\
2 & =\frac{x}{4}, \\
x & =8 .
\end{aligned}
\end{aligned} \begin{aligned}
\text { or }
\end{aligned}
\end{aligned}
$$

(36) Let $x=$ length of the body, then $\frac{x}{2}+6=$ length of tail

$$
\text { Then, } x=\frac{x}{2}+6+6
$$

or, $\quad \frac{x}{2}=12$,
$x=24$, the lengtl of the body;
$\frac{x}{2}+6=18$, the length of the tail ;
and, $6+24+18=48$, the length of the whole fish.
(37) Let $x=$ his age.

$$
\text { then, } \begin{aligned}
& x+\frac{x}{2}+\frac{x}{3}+28=3 x, \\
& \text { or, } \quad \begin{aligned}
x+\frac{5 x}{6}+28 & =3 x, \\
\frac{11 x}{6}+28 & =\frac{18 x}{6}, \\
28 & =\frac{7 x}{6}, \\
4 & =\frac{x}{6}, \text { and } x=24 \text {, his sge }
\end{aligned}
\end{aligned}
$$

ADDITION AND SUBTRACTION.

Remark. Pupils sometimes experience difficulty from not attending to the definition of similar quantities; for example, by regarding such terms as $2 a t^{2} b$ and $3 a b^{2}$ as similar. By attending to this point, and being careful to write similar terms under each other, no difficulty need hae experienced in solving all the questions, in either addition or subtraction

MULTIPLICATION.

Remares. In algebraic multiplication, there are a fow things which, although they affect no principle, are of sufficient importance to claim the pupil's attontion.
lst. In multiplying two monomials together, it is customary to write the sign first, then the numeral coefficient, and then the letters of the product from the left toward the right. Thus, in finding the product of $-2 a^{2}$ by $+3 a c$, we first write the sign of the product - , then 6 , then a^{3}, and then c, making the whole $-6 a^{3} c$. This is more convenient than writing the letters in the reverse order, hecause it corresponds to the manner of writing words.

2d. In multiplying by a polynomial, it is customary to multiply, first by the left term of the multiplier, next by the secoud term from the left, and so on. Although the result would evidently be the same if the operation were performed in a reverse order, yet this method is nov so well established, that a different one would be regarded as ubscholarly.

When a pupil understands addition of algebraic quantities, anc how to multiply one monomial by another, he can encounter no real dificulty in performing any of the operations in multiplication. It is not, thare fure, deemed necessary to hnsert the work of any of the exam pless

DIVISION.

Remanks. For reasons similar to those given under mu ifplication, if is custonary, in dividing one monomial by another, to write, first the s.gn of the quotient, theu the numeral coefficient, if any, and then the literal part from left to right.

In dividing one polynomial by another, in order to conform to the general method of proceeding from the left toward the right, it is customary to divide the first term of the dividend by the first term of the divisur; this, however, affects no principle, as the division may be con menced at the right hand, by dividing the last term of the dividend by the last term of the divisor.

The divisor may be written either on the left or the right of the dividend; the latter is the French method, and is more convenient, because the quotient being written beneath, the quantities to be multiplied together before making each subtraction, are the most conveniently situated witlo regard to each other.

We here present the operation of a few of the more difficult axamples. with which, and similar ones, pupils sometimes find difficulty.

Article 79.

Note. The terms in examples 12 and 17 , require to vé drrange '; after which, the operations present no difficulty.

> (14)

$$
\begin{aligned}
& \begin{array}{l}
4 a^{4}-5 a^{2} x^{2}+x^{4} \\
\frac{4 a^{4}-6 a^{3} x+2 a^{2} x^{2}}{6 a^{3} x-7 a^{2} x^{2}} \quad \text { An } 2 a x- \\
\frac{6 a^{3} x-9 a^{2} x^{2}+3 a x^{3}}{+2 a^{2} x^{2}-3 a x^{3}+} x^{4}
\end{array} \\
& 2 a^{2} x^{2}-3 a x^{3}+x^{4}
\end{aligned}
$$

$$
\begin{gather*}
4 x^{4}-64 \tag{18}\\
4 x^{4}-8 x^{3} \\
\hdashline+8 x^{3} \\
\hline 8 x^{3}-15 x^{2}+4 x^{2}+8 x+16 \\
-16 x^{2} \\
\hdashline+\frac{16 x^{2}-32 x}{+32 x-64} \\
32 x-64
\end{gather*}
$$

$$
\begin{gather*}
\frac{x^{4}-y^{4}}{x^{4}-x^{3} y} \frac{\mid x-y}{+x^{3} y} \quad \frac{x^{3}+x^{2} y+m y^{3}+y^{1}}{A n s} \tag{15}\\
\frac{x^{3} y-x^{2} y^{2}}{+x^{2} y^{2}} \\
\frac{x^{2} y^{2}-x y^{3}}{+x y^{3}-y^{4}} \\
x y^{3}-y^{4}
\end{gather*}
$$

(21)

$$
\begin{gathered}
y^{3}+1 \\
y^{3}+y^{2} \\
-y^{2} \\
-y^{2}-y+1 \\
-y^{2}-y \\
+y+1 \\
y+1
\end{gathered}
$$

$$
\begin{gather*}
x^{6}-3 x^{4} y^{2}+3 x^{2} y^{4}-y^{6} \quad \frac{\mid x^{3}-3 x^{2} y+3 x y^{2}-y^{3}}{\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}\right.} \tag{21}\\
x^{6}-3 x^{5} y+3 x^{4} y^{2}-x^{3} y^{3} \\
+3 x^{5} y-6 x^{4} y^{2}+x^{3} y^{3}+3 x^{2} y^{4} \\
\frac{3 x^{5} y-9 x^{4} y^{2}+9 x^{3} y^{3}-3 x^{2} y^{4}}{+3 x^{4} y^{2}-8 x^{3} y^{3}+6 x^{2} y^{4}} \\
\frac{3 x^{4} y^{2}-9 x^{3} y^{3}+9 x^{2} y^{4}-3 x y^{5}}{+x^{3} y^{3}-3 x^{2} y^{4}+3 x y^{5}-y^{6}} \\
x^{3} y^{3}-3 x^{2} y^{4}+3 x y^{5}-y^{6}
\end{gather*}
$$

FACTORING.

Remarks, In solviug the examples in factoring at the blackboard, the pupil should always explain why the given quantity can be separated litc factors. Thus, $4 a^{2} x^{4}-9 b^{2} y^{6}=\left(2 a x^{2}+3 b y^{3}\right)\left(2 a x^{2}-3 b y^{3}\right)$, because it is the difference of the squares of twe monomials, $2 a x^{2}$ and $3 b y^{3}$. Again, $x^{3}+1$ can be separuted into two facters, because it is the sum of the odd powers of two quantities x and 1 , (Art. 94. 5th); and one of the factors is $x+1$.

It is shown in Art. 215, that the direct method of resolving a quadratic trinomial into its factors, is to place it equal to zerc, and then find the roots of the equation; yet as the indirect method explained in Art. 95, presents no difficulty to an intelligent pupil, and is much shorter than the direct method, it should always be taught. Let it be kept distinctly before the mind of the pupil, that the whole difficulty consists in finding two numbers whose sum is equal to the coëfficient of the second term, and whose product is equal to the third term. Thus, in example I, "What two numbers are tbose whose sum is 5, and product 6?" Any intelligent pupil will soon discover that 2 and 3 are the numbers required.

We here present the solution of the examples in

Article 95.

(2) $a^{2}+7 a+12=(a+3)(a+4)$; because $+3+4=7$, and $3 \times 4=12$.
(3) $x^{2}-5 x+6=(x-2)(x-3)$; because -2 and $-3=-5$, and $-2 \times-3=+6$.
(4) $x^{2}-9 x+20=(x-4)(x-5)$; because -4 and $-5=-9$, and $-4 \times-5=+20$.
(5) $x^{2}+x-6=(x+3)(x-2)$; because $-2+3=+1$, and $-2 \times 3=-6$.
(6) $x^{2}-x-6=(x-3)(x+2)$; because $-3+2=-1$, and $-3 \times 2=-6$.
(7) $x^{2}+x-2=(x+2)(x-1)$; because $+2-1=+1$, and $-1 \times 2=-2$.
(8) $x^{2}-13 x+40 \doteq(x-5)(x-8)$; because -5 and $-8=-13$, and $-5 \times-8=40$.
(9) $x^{2}-7 x-8=(x-8)(x+1)$; because $-8+1=-7$, and $-8 \times 1=-8$.
(10) $x^{2}+7 x-18=(x-8)(x-2)$; because $-2+9=+7$, and $-2 \times 9=-18$.
(11) $x^{2}-x-30=(x-6)(x+5)$; because $-6+5=-1$, and $-6 \times 5=-30$.
(12) $3 x^{2}+12 x-15=3\left(x^{2}+4 x-5\right)=3(x+5)(x-1$.)
(13) $a^{2} x^{2}-9 a^{2} x+14 a^{2}=a^{2}\left(x^{2}-9 x+14\right)=a^{2}(x-7)(x-2)$.
(14) $2 a b x^{2}-14 a b x-60 a b=2 a b\left(x^{2}-7 x-30\right)=2 a b(x-10)(x+3)$.
(15) $2 x^{3}-4 x^{2}-30 x=2 x\left(x^{2}-2 x-15\right)=2 x(x-5)(x+3)$.

Article 96.

Nure. In performing the operations on the slate or black-board, a line should be drawn across each canceled factor. We have not the means, s.scept in the case of figures, of representing this by type. Thus, in example 4, following, a lime should be drawn across each of the c 's, and silso across ($a-b$) in the numerator and denominator
(2) $\frac{(x-3)\left(x^{2}-1\right)}{x-1}=\frac{(x-3)(x+1)(x-1)}{(x-1)}=(x-3)(x+1)$
$=x^{2}-2 x-3$.
(3) $\frac{\left(z^{3}+1\right)\left(z^{2}-1\right)}{(z+1)}=\frac{\left(z^{3}+1\right)(z-1)(z+1)}{z+1}=\left(z^{3}+1\right)(z-1)$
$=z^{4}-z^{3}+z-1$.
(4) $\frac{6 a^{2} c-12 a b c+6 b^{2} c}{2 a c-2 b c}=\frac{\phi c(a-b)(a-b)}{2 c(a-b)}=3(a-b)$.
(5) $\frac{(6 a x+9 a y)\left(4 x^{2}-\left(y^{2}\right)\right.}{4 x^{2}+12 x y+9 y^{2}}=\frac{3 a(2 x+3 y)(2 x+3 y)(2 x-3 y)}{(2 x+3 y)(2 x+3 y)}$
$=3 a(2 x-3 y)$.
(6)

$$
\begin{aligned}
& \frac{\left(x^{2}-5 x+6\right)\left(x^{2}-7 x+12\right)}{x^{2}-6 x+9}=\frac{(x-2)(x-3)(x-3)(x-4)}{(x-3)(x-3)} \\
& =(x-2)(x-4) .
\end{aligned}
$$

GREATEST COMMON DIVISOR.

Notr. All the examples for expreise, Art. 106, may bo solved by merely separnting tho quantities into their factors, by the rules for factoring Arts. 94; 95. But as the application of the direct rule for finding the greatist commen divisor of two polynomials, is generally regarded by pupils as a difficult operation, we here present the solutions of all the examples.

Article 106.

(5) $5 a^{2}+5 a x=5 a(a+x)$

By omitting the factor $5 a$, (see Note 2), and dividing $a^{2}-x^{2}$ by the other factor $a+x$, we find there is no remainder; therefore $a+x$ is the $g . c . d$.

$$
\begin{gathered}
x^{3}-a^{2} x=x\left(x^{2}-a^{2}\right) \\
x^{3}-a^{3} \frac{\mid x^{2}-a^{2}}{(x} \\
\frac{x^{3}-a^{2} x}{a^{2} x-a^{3}} \\
a^{2}(x-a)
\end{gathered}
$$

$$
\frac{x^{2}-a^{2} \mid x-a \text { g.c. } d}{x^{2}-a x} \frac{(x+a}{}
$$

$$
\frac{x^{2}-a x}{a x-a^{2}}
$$

$$
a x-a^{2}
$$

(7) $\quad x^{3}-c^{2} x=x\left(x^{2}-c^{2}\right)$
$x^{2}+2 c x+c^{2} \quad \frac{x^{2}-c^{2}}{(1}$
$\frac{x^{2}-c^{2}}{2 c x+2 c^{2}}$
$2 c(x+c)$

$$
\begin{aligned}
& x^{2}-c^{2} \left\lvert\, \frac{\mid x+c \text { g. } c \cdot d .}{(x-c}\right. \\
& \frac{x^{2}+c x}{-c x-c^{2}} \\
& -c x-c^{2}
\end{aligned}
$$

After dividing we find the first remainder contains a factor a^{2} not contained in $x^{2}-a^{2}$, hence it is not a factor of the greatest common divisor, and should be omitted. See Note 3.

$$
\begin{aligned}
& \text { (8) } \begin{array}{c}
x^{2}+5 x+6 \\
\frac{x^{2}+2 x-3}{3 x+9} \\
3(x+3)
\end{array}, \frac{x^{2}+2 x-3}{(1} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}+2 x-3}{x^{2}+3 x} \\
& \frac{x+3 \text { g.c. } d}{(x-1} \\
& -x-3 \\
& -x
\end{aligned}
$$

$$
\text { (9) } \begin{gathered}
\frac{6 a^{2}+11 a x+3 x^{2}}{} \frac{16 a^{2}+7 a x-3 x^{2}}{(1} \\
\frac{a^{2}+7 a x-3 x^{2}}{4 a x+6 x^{2} ;} \\
2 x(2 a+3 x) \\
6 a^{2}+7 a x-3 x^{2} \leq 2 a+3 x
\end{gathered}
$$

By completing this division, we find there is no remainder hence, $2 a+3 x$ is the greatest common divisor.

$$
\text { (10) } \begin{aligned}
& a^{4}-x^{4} \mid a^{3}+a^{2} x-a x^{2}-x^{3} \\
& \frac{a^{4}-a^{3} x-a^{2} x^{2}-a x^{3}(a-x}{-a^{3} x+a^{2} x^{2}+a x^{3}-x^{4}} \\
& \frac{-a^{3} x-a^{2} x^{2}+a x^{3}+x^{4}}{2 a^{2} x^{2}-2 x^{4} ;} \text { then by factoring } \\
& a^{2 x^{2}\left(a^{2}-x^{2}\right)} \\
& a^{3}+a^{2} x-a x^{2}-x^{3} \leq a^{2}-x^{2}
\end{aligned}
$$

By completing the division, we find there is no remainder, hence, $a^{2}-x^{2}$ is the greatest common divisor.

$$
\begin{align*}
& a^{3}-a^{2} x+3 a x^{2}-3 x^{3} \tag{11}\\
& \frac{a^{3}-5 a^{2} x+4 a x^{2}}{+4 a^{2} x-a x^{2}-3 x^{3}} \\
& \frac{4 a^{2} x-20 a x^{2}-16 x^{3}-5 a x+4 x^{2}}{(a+4 x} \\
& +19 a x^{2}-19 x^{3} \\
& 19 x^{2}(a-x)
\end{align*} \text { by factoring this we get }
$$

By dividing $a^{2}-5 a x+4 x^{2}$ by $a-x$, we find there is no remainder ; hence, $a-x$ is the greatest common divisor.
(12) $a^{2} x^{4}-a^{2} y^{4}=a^{2}\left(x^{4}-y^{4}\right): x^{5}+x^{3} y^{2}=x^{3}\left(x^{2}+y^{2}\right)$.

By the principle of Note 3, neither of the factors a^{2} or x^{3}, can form factors of the greatest common divisor ; then by dividing $x^{4}-y^{4}$ by $x^{2}+y^{2}$, we find there is no romainder ; hence, the latter quantity is the required greatest common divisor.

$$
\begin{align*}
& \frac{a^{13}-x^{13}}{\frac{a^{13}-a^{8} x^{5}}{+a^{5}-x^{5}}} \frac{\left(a^{8}+a^{3} x^{5}\right.}{x^{13}} \tag{13}\\
& \begin{array}{l}
\frac{a^{5}-x^{5}}{a^{5}-a^{2} x^{3}} \\
a^{2} x^{3}-x^{5}
\end{array} \frac{1 a^{3}-x^{3}}{\left(a^{2}\right.} \\
& -\frac{a^{8} x^{5}-a^{3} x^{10}}{+a^{3} x^{10}-x^{13}} \\
& x^{10}\left(a^{3}-x^{3}\right) \\
& x^{3}\left(a^{2}-x^{2}\right) \\
& \begin{array}{c}
a^{3}-x^{3} \quad \mid a^{2}-x^{2} \\
a^{3}-a x^{2} \\
+a x^{2}-x^{3} \\
x^{2}(a-x)
\end{array}
\end{align*}
$$

By dividing $a^{2}-x^{2}$ by $a-x$, we find there is no remainder ; hence, $a-x$ is the greatest common divisor sought.

LEAST COMMON MULTIPLE.

Nore. The pupil should be reminded, that the operation of finding the least common inultipie in algebra, involves precisely the same prin ciples as in arithmetic.
(6)

$a-x$
$2 a$
:---
$2 a$
$3 x^{4}(a+x)$

$(a-x) \times 2 a \times 2 a \times 3 x^{4}(a-1-x)=12 a^{2} x^{4}\left(a^{2}-x^{2}\right) . \quad$ Ans.

2	$\frac{8 x^{2}(x-y)}{}$	$\frac{3 a^{4} x^{2}}{4 x^{2}(x-y)}$	$3 a^{4} x^{2}$
$3 a$	$\frac{12 a x y^{2}}{6 a x y^{2}}$		
x	$\frac{2 x^{2}(x-y)}{2 x^{2}(x-y)}$	$3 a^{4} x^{2}$	$3 a x y^{2}$
x	$\frac{a^{3} x^{2}}{2 x(x-y)}$	$x y^{2}$	
$2(x-y)$	$a^{3} x$	a^{3}	y^{2}

$2 \times 2 \times 3 a \times x \times x \times 2(x-y) \times a^{3} \times y^{2}=24 a^{4} x^{2}(x-y) . \quad$ Ans.
(8)

$x-y$	$10 a^{2} x^{2}(x-y)$	$15 x^{5}(x+y)$	$12\left(x^{2}-y^{2}\right)$
$x+y$	$\frac{10 a^{2} x^{2}}{}$	$15 x^{5}(x+y)$	$12(x+y)$
3	$\frac{10 a^{2} x^{2}}{5 a^{2} x^{2}}$	$15 x^{5}$	12
	$\frac{15 x^{2}}{} x^{2} x^{2}$	$5 x^{5}$	6
x^{3}	2		

$(x-y)(x+y) \times 2 \times 3 \times 5 x^{2} \times a^{2} \times x^{3} \times 2=60 a^{2} x^{5}\left(x^{2}-y^{2}\right) . \quad$ Ans.

ALGEBRAIC FRACTIONS.

Remare. The pupil can experience but little difficulty in solvmg any of the examples in fractions, if he is well acquainted with the fundamental operations, and Factoring. We here present solutions of the only examples likely to nceasion difficulty.

Case 1. To reduce a fraction to its lowest terms.

Article 128.

(14) $\frac{3 z^{3}-24 z+9}{4 z^{3}-32 z+12}=\frac{3\left(z^{3}-8 z+3\right)}{4\left(z^{3}-8 z+3\right)}=\frac{3}{4}$. Ans
(15) $\frac{5 a^{2}+5 a x}{a^{2}-x^{2}}=\frac{5 a(a+x)}{(a+x)(a-x)}=\frac{5 a}{a-x}$. Ans.
(16) $\frac{n^{2}-2 n+1}{n^{2}-1}=\frac{(n-1)(n-1)}{(n+1)(n-1)}=\frac{n-1}{n+1}$. Ans.
(18) $\frac{x^{3}-x y^{2}}{x^{4}-y^{4}}=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)}=\frac{x}{x^{2}+y^{2}}$. Ans
(19) $\frac{a^{2}+b^{2}}{a^{4}-b^{4}}=\frac{a^{2}+b^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)}=\frac{1}{a^{2}-b^{2}}$. Ans.
(20) $\frac{x^{2}-y^{2}}{x^{2}-2 x y+y^{2}}=\frac{(x+y)(x-y)}{(x-y)(x-y)}=\frac{x+y}{x-y^{\prime}} \quad$ Ans
(21) $\frac{x^{3}-a x^{2}}{x^{2}-2 a x+a^{2}}=\frac{x^{2}(x-a)}{(x-a)(x-a)}=\frac{x^{2}}{x-a}$. Ans.
(22) $\frac{2 x^{2}-6 x}{x^{2}-x-6}=\frac{2 x(x-3)}{(x+2)(x-3)}=\frac{2 x}{x+2}$. Ans.
(23) $\frac{x^{2}+2 x-15}{x^{2}+8 x+15}=\frac{(x+5)(x-3)}{(x+5)(x+3)}=\frac{x-3}{x+3}$. A η.

Article 129.

(7) $\frac{x^{3} y^{2}+x^{2} y^{3}}{a x^{2} y+a x y^{2}}=\frac{x y\left(x^{2} y+x y^{2}\right)}{a\left(x^{2} y+x y^{2}\right)}=\frac{x y}{a}$. Ans.
(8) $\frac{4 a+4 b}{2 a^{2}-2 b^{2}}=\frac{4(a+b)}{2(a+b)(a-b)}=\frac{2}{a-b}$. Ans.
(9) $\frac{n^{3}-9 \eta^{2}}{n^{2}-4 n+4}=\frac{n^{2}(n-2)}{(n-2)(n-2)}=\frac{n^{2}}{n-2} \quad$ A n. .
(10) $\frac{x^{2}+2 x-3}{x^{2}+5 x+8}=\frac{(x+3)(x-1)}{(x+3)(x+2)}=\frac{x-1}{x+2}$, Ans.

MULTIPLICATION AND DIVISION OF FRACTIONG.
Remarg. The only difficulty in solving any of the exanples in either multiplication or division of fractions, consists in reducing the resulting fraction to its lowest terms. The difficulty may be avoided, generally, by first indicating the operations to be performed, then factoring, and then canceling the fuctors common to both terms. We lhore present the soluzion of a few of the examples, bath in multiplication and division

Article 140.

$$
\begin{equation*}
-\frac{x}{a+x} \times \frac{a^{2}-x^{2}}{x^{2}} \times \frac{a}{a-x}=\frac{x(a+x)(a-x) a}{(a+x) x^{2}(a-x)}=\frac{a}{x} \text {. Ans. } \tag{11}
\end{equation*}
$$

$\frac{x^{2}+y^{2}}{x-y} \times \frac{x^{2}-y^{2}}{x+y} \times \frac{a}{1}=\frac{\left(x^{2}+y^{2}\right)(x+y)(x-y) a}{(x-y)(x+y)}=a\left(x^{2}+y^{2}\right) \cdot A$

$$
c+\frac{c x}{c-x}=\frac{c^{2}}{c-x} \cdot \frac{c^{2}}{c-x} \times \frac{c^{2}-x^{2}}{x+1}=\frac{c^{2}(c+x)(c-x)}{(c-x)(x+1)}=-\frac{c^{2}(c+x)}{x+1}
$$

Article 141.

$$
\begin{align*}
& \frac{a^{3}+b^{3}}{2+3 x} \div\left(a b+b^{2}\right)=\frac{a^{3}+b^{3}}{2+3 x} \times-\frac{1}{a b+b^{2}}=\frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{(2+3 x) b(a+b)}= \tag{22}\\
& \frac{a^{2}-a b+b^{2}}{2 b+3 b x} . \quad \text { Ans. }
\end{align*}
$$

(23) $\frac{x^{2}-y^{2}}{3 a} \div\left(x^{2}-x y\right)=\frac{x^{2}-y^{2}}{3 a} \times \frac{1}{x^{2}-x y}=\frac{(x+y)}{3 a x(x-y)}=\frac{x+y}{3 a x}$

Article 142.

$$
\begin{align*}
& \frac{a-b}{a+\frac{1}{b}} \div \frac{a^{2}-b^{2}}{a^{2}+2 a b+b^{2}}=\frac{a-b}{a+b} \times \frac{a^{2}+2 a b+b^{2}}{a^{2}-b^{2}}= \tag{21}\\
& \frac{(a-b)(a+b)(a+b)}{(a+b)(a+b)(a-b)}=1 . \quad \text { Ans }
\end{align*}
$$

$$
\begin{align*}
& \frac{2 x^{2}}{a^{3}+x^{3}} \div \frac{x}{a+x}=-\frac{2 x^{2}}{a^{3}+x^{3}} \times \frac{a+x}{x}=\frac{2 x^{2}(a+x)}{(a+x)\left(a^{2}-a x+x^{2}\right) x}= \tag{23}\\
& \overline{a^{2}}-a x+\bar{x}-x^{2} \quad \text { Ans }
\end{align*}
$$

Article 144.

RESOLUTION OF RRACTIONSINTO SERIES.
(2) $\left.\begin{aligned} & \frac{1+x}{\frac{1+x}{-x}} \frac{11+x}{\left(1-x+x^{2}-8 c c\right.} \\ & \frac{-x-x^{2}}{+x^{2}}\end{aligned} \right\rvert\,$
(3) $a x \quad \mid a-x$
$a x-x^{2} \quad\left(x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+d x\right.$
$+x^{2}$
$\frac{+x^{2}-\frac{x^{3}}{a}}{+\frac{x^{3}}{a}}$
$-1 \frac{x^{3}}{a}-\frac{x^{4}}{a^{2}}$
4) $\begin{aligned} & \frac{1+x \frac{1-x}{1-x}}{\frac{1-2 x+2 x^{2}+8 c}{+2 x}} \\ & \frac{+2 x-2 x^{2}}{+2 x^{2}} \\ & \frac{+2 x^{2}-2 x^{3}}{+2 x^{3}}\end{aligned}$
(6) $x+2 \frac{\mid x+1}{\left(1+\frac{1}{x}-\frac{1}{x^{2}}+\text { \&ec }\right.}$
$\frac{1+1}{x+1}$
$\frac{1+\frac{1}{x}}{-\frac{1}{x}}$
$-\frac{1}{x}-\frac{1}{x^{2}}$

EQUATIONS OF THE FIRST DEGREE。 OR SIMPLE EQUATIONS.

Remark. The ouly difficulty pupils will be likely to experience in solving the examples in Articles 154 and 155, will be where a fraction whese numerater centains twe or more terms, is preceded by the sign minus, as in example 10, Art. 154, or in examples 16, 17, \&c., Art. 155. This may be obviated by the pupil writing the numerater of the fraction In a vinculum when the equation is clcared of fractiens, and then preceeding to purform the uperations indicated. It will thus be seen, that the effect of the minus sign before a fraction, is, to change the sign of each
lerm of the numerator. (See Art. 132). For illustration, take example . 6 , Art. 155.

$$
\frac{x-1-2}{3}-\frac{x-3}{4}=x-2-\frac{x-1}{2}
$$

Multiplying both sides by 12 , to remove the denominators.
or,

$$
\begin{array}{lrl}
& 4(x+2)-3(x-3) & =12 x-24-6(x-1), \\
\text { or, } & 4 x+8-3 x+9 & =12 x-24-6 x+6, \\
\text { by transposing, } 4 x-3 x-12 x+6 x & =-24+6-8-9 ; \\
\text { by reducing, } & -5 x & =-35 ; \\
x & =7 .
\end{array}
$$

by reducing,

QUESTIONS PRODUCING EQUATIONS OF THE FIRST DEGREE.

Article 156.

(16) Let $x=\mathrm{A}$'s share, then $2 x=\mathrm{B}$'s, and $x+2 x=42$.
Whence $x=14$.
(17) Let $x=$ the first part, then $2 x=$ the second, and $3 x=$ the third, and $x+2 x+3 x=48$; from which $x=8$.
(18) Let $x=$ the first part, then $3 x=$ the second, and $3 x \times 2$ $=6 x=$ the third part.
Therefore, $x+3 x+6 x=60$; from which $x=6$.
(19) Let $x=$ the number of each, then $1 x$ or $x=$ cost of the apples, $\begin{array}{ll}2 x= & " \quad \text { lemons, } \\ 5 x= & \text { " oranges. }\end{array}$ and $\quad 5 x=" \quad$ " oranges.
Therefore, $x+2 x+5 x=56$; from which $x=7$.
(20) Let $x=$ cost of an apple, then $2 x$ cost of a lemon.
$5 x=$ cost of all the apples, and $3 \times 2 x=$ cost of all the lemons.
Therefore, $5 x+6 x=22$; from which $x=2$.
(21) Let $x=$ C's age, then $2 x=$ B's age, and $4 x=$ A's age, Therefore, $x+2 x+4 x=98$; from which $x=14$.
(22) Ler $x=$ A's cents, then $3 x=13$'s, $x+\frac{3 x}{3}=2 x=$ C's, and $3 x+2 x=5 x=$ D's.
Therefore, $x+3 x+2 x+5 x=44$;
from which $x=4$.
(23) Let $x=$ age of youngest, then $2 x=$ common difference of their ages, and $3 x=$ age of second, $5 x=$ age of third. and $7 x=$ age of fourth.
Therefore, $x+3 x+5 x+7 x=48$;
from which $x=3$.
(25) Let $5 x$ and $7 x$ represent the numbers, since $5 x$ is to $7 x$ as 5 to 7 .
Then $5 x+7 x=60$;
from which $x=5$.
Hence, $5 x=25$, and $7 x=35$.
(26) Let $2 x, 3 x$, and $5 x$ represent the parts; then
$2 x+3 x+5 x=60$;
from which $x=6$.
Hence, $2 x=12,3 x=18$, and $5 x=30$.
(27) Let $3 x, 5 x, 7 x$, nnd $8 x$ represent the parts; then
$3 x+5 x+7 x+8 x=92 ;$
from which $x=4$.
Hence, $3 x=12,5 x=20,7 x=28$, and $8 x=32$.
(28) Let $2 x, 3 x$, and $5 x$ represent the parts ; these will evrdently fulfill the second condition, since $\frac{1}{2}$ of the first, $\frac{1}{3}$ of the second, and $\frac{1}{5}$ of the third, are each equal to \approx
Then $2 x+3 x+5 x=60$;
from which $x=6$.
Hence, $2 x=12,3 x=18$, and $5 x=30$.
(29) Let $x=$ the number.

Then $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=65$;
from which $x=60$.
Or, let $12 x=$ the number; then
$6 x-4 x+3 x=65$;
from which $x=5$; and $12 x=60$.
To avoid fractions, we rhoose $12 x$, because it is a multi. ple of 2,3 , and 4 .
;30) Let $x=$ the number.
Then $\frac{x}{5}-\frac{x}{7}=4$;
from which $x=70$.
By putting $35 x$ for the number, we may avcid fractions.
(31) Let $x=\mathrm{A}$'s age, then $2 \frac{1}{5} x=\mathrm{B}$'s.

Therefore, $x+\frac{14 x}{5}=76$;
or, $\frac{5 x}{5}+\frac{14 x}{5}=\frac{19 x}{5}=76$;
by clearing of fractions, $19 x=76 \times 5$,
by dividing by $19, x=4 \times 5=20$, A's age.
(32) Let $x=A$'s part, then $\frac{2 x}{3}=B$'s, and $\frac{3 x}{7}=C$'s.

Therefore, $x+\frac{2 x}{3}+\frac{3 x}{7}=88$;
from which $x=42$.
(33) Let $x=\mathrm{C}^{\prime} \mathrm{s}$ share, then $\frac{3 x}{4}=\mathrm{B}^{\prime} \mathrm{s}$, and ${ }_{5}^{3}$ of $\frac{3 x}{4}=\frac{9 x}{20}=\mathrm{A}$'s.

Therefore, $\frac{9 x}{20}+\frac{3 x}{4}+x=440$;
from which $x=200$.
(34) Let $3 x=$ distance from A to B , then $5 x=$ distance from B to C ;
also, $\frac{3 x}{3}+5 x=6 x$, and $\frac{6 x}{3}=2 x=$ distance from C to D .
There fore, $3 x+5 x+2 x=120$;
from which $x=12$.
Hence, $3 x=36$, and $5 x=60$.
(35) Let $3 x=$ capital

Then $3 x-\frac{3 x}{3}=2 x=$ capital at close of 1 st year ;
$2 x+\frac{2}{5}$ of $2 x=2 x+\frac{4 x}{5}=\frac{14 x}{5}=$ cap. close 2nd year ;
$\frac{14 x}{5}-\frac{1}{7}$ of $\frac{14 x}{5}=\frac{14 x}{5}-\frac{2 x}{5}=\frac{12 x}{5}=$ cap. 3d year.
Therefore, $\frac{12 x}{5}=1236$;
from which $3 x=1545$.
(36) Let $x=$ rent last year.

Then $x+\frac{5 x}{100}=168$;
from which $x=160$.
(37) Let $x=$ the less part, then $x+6=$ the greater.

Therefore, $x+x+6=32$;
from which $x=13$.
(38) Let $x=$ votes of unsuccessful candidate, Then $x+50=$ votes of successful candidate.
Therefore, $x+x+50=256$; from which $x=103$.
(39) Let $x=\mathrm{A}^{\prime} \mathrm{s}$, then $x+100=B$'s, and $x+100+270=x+370=$ C's.
Therefore, $x+x+100+x+370=1520$; from which $x=350$.
(40) Let $x=$ number of women, then $x+4=$ men, and $2 x+4+10=2 x+14=$ number of children. Therefore, $x+x+4+2 x+14=90$; from which $x=18$.
(41) Let $x=$ number of yards cut off, then $x-9=$ number of y ards remaining.
Therefore, $x+x-9=45$; from which $x=27$.
(42) Let $x=$ the number. Then $7 x-20=20-x$; from which $x=5$.
(43) Let $x=$ each daughter's share, then $2 x=$ each sun's snate:
$3 x=$ what all the daughters will receive;
$4 x=$ " both the sons will receive;
then $7 x-500=$ what the widow will receive.
Therefore, $3 x+4 x+7 x-500=6500$; from which $x=500$.
(44) Let $x=$ the number of days, then $20 x=$ distance 1 st travels, and $30 x=$ " 2nd travels. Therefore, $20 x+30 x=400$; from which $x=8$.
(45) Let $x:=$ the number of hours.

Then $3 x+30=$ miles B travels, and $5 x=$ miles A travels.
Therefore, $5 x=3 x+30$. from which $x=15$.
(46) Let $x=$ the number.

Then $\frac{x}{2}+\frac{x}{3}-44=\frac{x}{5}-6$;
from which $x=60$.
(47) Let $x=$ time past noon.

Then $12-x$ time to midnight.
Therefore, $x+\frac{x}{2}+\frac{x}{3}+\frac{2 x}{5}=\frac{12-x}{6}$;
clearing of fractions and reducing, we find $72 x=60$;
whence $x=\frac{5}{6} \mathrm{hr}$. $=50 \mathrm{~min}$.
(48) Let $x=$ one part, then $120-x=$ the other.

Therefore, $\frac{120-x}{x}=1 \frac{1}{2}$ or $\frac{3}{2}$;
from which $x=48$.
(49) Let $x=$ the number.

Then $\frac{7 x+3}{2}-4=15$;
from which, $x=5$.
(50) Let $x=$ the number.

Then $\frac{5 x-24}{6}+13=x$;
from which $x=54$.
(51) Let $3 x=$ A's capital, then $2 x=B$'s.

Then $3 x-100=$ A's after losing $\$ 100$; $2 x+100=$ B's after gaining $\$ 100$.
I'hersfore, $2 x+100-\frac{5}{7}(3 x-100)=134$;
from which $x=262$.
Hence, $3 x=786$, and $2 x=524$.
(52) Let $x=$ his money.

Then $x-\left(\frac{2 x}{3}+3\right)=\frac{x}{5}+7$;
from which $x=75$.
(53) Let $x x=$ annual ineome of each.

Then $x=$ what A saves, and $4 x=$ what he spends yearly ; also, $4 x+25=$ what B spends yearly ;
and $5 x-(4 x+25)=x-25=$ what B saves yearlv Therefore, $5(x-25)=200$;
from which $x=65$.
Hence, $5 x=325$.
(54) Let $x=$ the number of pounds.

Then $\frac{2 x}{3}+10=1 b s$. of nitre ;

$$
\begin{aligned}
& \frac{2 x}{23}+1=\text { lbs. of sulphur ; } \\
& \frac{x}{3}-17=\text { lbs. of ehareoal ; }
\end{aligned}
$$

Therefore, $\frac{2 x}{x}+10+\frac{2 x}{23}+1+\frac{x}{3}-17=x$.
By omitting $\frac{2 x}{3}+\frac{x}{3}$ on the right, and its equivalent x on the left, and reducing,
we find $\frac{2 x}{23}-6=0$;
whence $2 x=6 \times 23$, and $x=3 \times 23=69$.
(55) Let $x=$ cost of harness, then $3 x=$ cost of horse ;
$4 x \times 2 \frac{2}{3}=\frac{32 x}{3}$, therefore $\frac{32 x}{3}-19=$ cost of chaise.
Hence, $x+3 x+\frac{32 x}{3}-19=245$;
transposing and reducing, $\frac{44 x}{3}=264$;
whence $44 x=26.4 \times 3$,
and $x=6 \times 3=18$.
(56) Let $3 x$ and $4 x$ represent the number.

Then $3 x+4: 4 x+4 \cdot: 5: 6$, whence $6(3 x+4)=5(4 x+4)$;
from which $x=2$. Hence, $3 x=6$, and $4 x=8$.
(57) Let $2 x$ and $5 x$ represent the numbers.

Then $2 x-2: 5 x-2:: 3: 8$,
whence $8(2 x-2)=3(5 x-2)$;
from which $x=10$.
Hence, $2 x=20$, and $5 x=50$.
(58) Let $x=$ the number of years.

Then $25+x: 30+x:: 8: 9$;
whence $9(25+x)=8(30+x)$;
whence, by reducing, $x=15$.
Again, let $x=$ the number of years, since their ages were as 1 to 2.
Then $25-x: 30-x:: 1: 2 ;$
whence $2(25-x)=30-x$,
and, by reducing, $x=20$.
(59) Let $x=$ the number of hours.

Then, since the first fills the cistern in $1 \frac{1}{\frac{3}{3}}$ hours, it fille $\frac{1}{1 \frac{1}{3}}=\frac{3}{4}$ of it in 1 hour, and in x hours it will fill $\frac{3 x}{4}$ part of it.
In like manner, the second pipe fills $\frac{1}{3 \frac{1}{3}}=\frac{3}{10}$ of the cistern in 1 hour, and in x hours it will fill $\frac{3 x}{10}$ part of it.
Also, the third pipe fills $\frac{1}{5}$ in 1 hour, and in x hours will fill $\frac{x}{5}$ part of it.
Therefore, $\frac{3 x}{4}+\frac{3 x}{10}+\frac{x}{5}=1$, or the whole of the cistern ;
whence $x=\frac{4}{5}$ hour $=48 \mathrm{~min}$.
(60) Let $x=$ the number of days.

Then, since the first does it in seven days, he does t of it in 1 day, and in x days, $\frac{x}{7}$.
In like manner, the second does $\frac{1}{6}$ in 1 day, and in x days, $\frac{x}{6}$
The third does $\frac{1}{8}$ in 1 day, and in x days $\frac{x}{9}$.
Therefore, $\frac{x}{7}+\frac{x}{6}+\frac{x}{9}=1$, or the whole ;
from which $x=2 \frac{20}{5}$.
(61) Let $3 x=$ money,
$3 x-\frac{3 x}{3}=2 x$.
Then $2 x+50-\frac{1}{1}(2 x+50)+37=100$;
from which $x=10$.
Hence, $3 x=30$.
(62) Let $5 x=$ yearly salary;
$5 x-\frac{2}{5}$ of $5 x=3 x$;
$3 x-\frac{1}{3}$ of $3 x=2 x$.
Then $2 x-\frac{2 x}{5}=120$;
from which $x=75$, and $5 x=375$.
(63) Let $x=$ value of suit of clothes.

Then $80+x=$ yearly wages ;
and $\frac{80+x}{12}=$ monthly wages.
Therefore, $7\left(\frac{80+x}{12}\right)=x+35$,
from which $x=28$.
(64) Let $x=$ days it will last the woman.

Then, $\frac{1}{x}=$ part the woman can drink in 1 day ;
since both can drink it in 6 days, they can drink $\frac{1}{6}$ o. it in 1 day ;
since the man can drink it in 10 days, he can drink of it in 1 day.
Therefore, $\frac{1}{6}-1 \frac{1}{0}=\frac{1}{x}$;
from which $x=15$.
(65) Let $x=$ the distance in miles.

Then $\frac{x}{15}=$ hours in going from C to L ;
and $\frac{x}{10}=" \quad$ in going from L t.o C.
Therefore, $\frac{x}{15}+\frac{x}{10}=25$;
from which $x=150$.
(66) Let $x=$ what B lost ; then $2 x=$ what A lost

Therefore, $\frac{240-2 x}{3}=96-x$;
from whin $x=48$.
(67) Let $x=$ the whole number of gallons.

Then $\frac{x}{2}+25=$ gallons of wine ;
and $\frac{x}{3}-5=$ gallons of water.
Therefore, $\quad x=\frac{x}{2}+-25+\frac{x}{3}-5$.
Whence $x=120$, and $\frac{x}{2}+25=85=$ gallons of wlene;
and $\frac{x}{3}-5=35=$ gallons of water.
(68) Let $x=$ less part, then $91-x=$ the greater part, and $91-2 x=$ the difference of the parts.
Therefore, $\frac{91-x}{91-2 x}=7$;
from which $x=42$.
(69) By representing the four parts by $x-2, x+2, \frac{1}{2} x$, and $2 x$, we at once fulfill the last four conditions.
Therefore, $x-2+x+2+\frac{1}{2} x+2 x=72$;
by adding, $4 \frac{1}{2} x=72$,
whence $x=16$.
Then $x-2=14 ; x+2=18 ; \frac{1}{2} x=8$; and $2 x=32$.
(70) Let $x=$ length of each piece.

Then $3(x-19)+x-17=142$;
from which $x=54$.
(71) Let $x=$ the number of sheep.

Then $\frac{x}{10}=$ acres ploughed;
and $\frac{x}{4}=$ acres of pasture.
Therefore, $\frac{x}{10}+\frac{x}{4}=161$;
from which $x=460$.
(72) Let $x=$ greater part, then $34-x=$ less part, $18-(34-x)=x-16$;
Therefore, $x-18: x-16:: 2: 3$.
Whence $3(x-18)=2(x-16)$;
from which $x=22$.
(73) Let $x=$ the number of beggars.

Then $3 x-8=$ his money;
also, $2 x+3=$ his money;
Therefore, $3 x-8=2 x+3$;
from which $x=11$.
(74) To avoid fractions, let $16 x=$ the number of apples. $16 x$
$8 x-8=$ number distributed to the first;
$8 x+8=$ number left ;
$4 x+4-8=$ number " "" second;
$4 x+12=$ number left ;
$2 x+6-8=$ number " " " third;
$2 x+14=$ number left;
$x+7-8=$ number " "" fourth ;
$x+15=$ number left.
Therefore, $x+15=20$;
from which $x=5$, and $16 x=80$.
The question may be solved in the same manner by letting $x=$ the number of apples.
(75) Let $x=$ number of days, in which B alone could reap it. Then $\frac{1}{x}=$ part B could reap in 1 day, and $\frac{6}{x}=$ the part he could reap in 6 days.
Since A can reap it in 20 days, he can reap $\frac{1}{20}$ in 1 day, and in 16 days, $\frac{1}{2} \frac{6}{6}$.
Therefore, $\frac{1}{2} \frac{6}{0}+\frac{6}{x}=1$, the whole ;
from which $x=30$.
(76) Let $\frac{1}{2} x$ and $\frac{2}{3} x$ represent the numbers.

Then $\frac{1}{2} x+6: \frac{2}{3} x+5:: \frac{2}{5}: \frac{1}{8}$.
Whence $\frac{1}{4}\left(\frac{1}{2} x+6\right)=\frac{2}{5}\left(\frac{2}{3} x+5\right)$;
from which $x=60$; hence, $\frac{1}{8} x=30$, and $\frac{5}{3} x=40$.
(77) Let $x=$ price of a bushel of barley.

Then $\frac{4 x+90}{9}=$ price of a bushel of oats;
therefore, $x+3: \frac{4 x+90}{9}:: 8: 5$.
Whence $5(x+3)=8\left(\frac{4 x+90}{9}\right)$;
from which $x=45$.
(78) Let $2 x=$ distance from A to B , then $3 x=$ distance from C to D ;
$\frac{2 x}{4}+\frac{3 x}{2}=2 x=3$ times the distance from B to C;
therefore, $\frac{2 x}{3}=$ distance from B to C.
Hence, $2 x+\frac{2 x}{3}+3 x=34$;
from which $x=6$; hence, $2 x=12 ; 3 x=18$; and $\frac{2 x}{3}=4$.
(79) Let $x=$ the lbs of rice,
then $\frac{x+5}{2}=\frac{1}{3}$ the weight of the flour, since $\frac{1}{2}$ of $\frac{2}{3}$ is $\frac{1}{3}$, and $\frac{3 x+15}{2}=$ the weight of the flour;
$\frac{1}{5}\left(\frac{3 x+15}{2}+x\right)=-\frac{x+3}{2}=$ weight of the water.
Therefore, $x+\frac{3 x+15}{2}+\frac{x+3}{2}=15$;
from which $x=2$.

Article 161.

- WTIONS PRODUCINGEQUATIONS CONTAINING TWO UNKNOWN QUANTITIES.
(a) Let $x=$ the price of a 1 b . of coffee, and $y=$ the price of a lb. of sugar.
Then $5 x+3 y=79, \quad(1)$,
and $3 x+5 y=73, \quad$ (2) ;
from which $x=11$, and $y=8$.

10) Let $x=$ the price of a horse, and $y=$ the price of a cow. Then $9 x+7 y=300$, (1), and $6 x+13 y=300$, (2);
from which $x=24$, and $y=12$.
(7) Let $x=$ the price of a dozen of port, and $y=$ the price of a dozen of sherry.
Then $20 x+30 y=120$, (1),
and $30 x+25 y=140$, (2);
from which $x=3$, and $y=2$.
(8) Let x and y represent the numbers.

Then $\frac{1}{2} x+\frac{1}{5} y=22, \quad$ (1), and $\frac{1}{4} x+\frac{1}{5} y=12, \quad$ (2);
from which $x=24$, and $y=30$.
(9) Let x represent the greater, and y the less of the two numbers.

> Then $x+\frac{1}{3} y=37$, and $\quad y-\frac{1}{4} x=20$,
from which $x=28$, and $y=27$.
(10) Let $x=$ tne first, and $y=$ the second of the two number

Then $\frac{1}{8} x-\frac{1}{3} y=5, \quad$ (1),
and $\frac{1}{4} x-\frac{1}{5} y=2, \quad$ (2) ;
from which $x=20$, and $y=15$.
(11) Let $x=$ value of first horse, and $y=$ value of second.

Then $x+25=2 y, \quad$ (1),
and $y+25=3 x, \quad$ (2);
from which $x=15$, and $y=20$.
(12) Let $x=\mathrm{A}$'s property, and $y=\mathrm{B}$'s.

Then $x+50=y-20$, (1), and $3 x+5 y=23$ ล̆ 0 , (2);
from which $x=250$, and $y=320$.
(13) Let $x=$ gallons 1 st holds, and $y=$ gallons 2 d holds. Then $\frac{2 x}{5}+96=\frac{3 y}{4}$, (1),

$$
\text { and } \frac{5 y}{8}=\frac{4 x}{9}, \quad \text { (2) ; }
$$

from which $x=720$, and $y=512$.
(14) Let $x=$ digit in ten's place, and $y=$ digit in unit's place. Then $10 x+y=$ the number, and $10 y+x=$ number inverted, therefore, $\frac{10 x+y}{x+y}=7,(1)$,

$$
\text { and } \frac{10 y+x}{x+y+4}=3,(2) \text {; }
$$

from whicl $x=8$, and $y=4$.
(15) Let $x=$ the numerator, and $y=$ the denominator of the fraction.

$$
\begin{aligned}
& \text { Then } \frac{x+8}{y}=2 . \quad \text { (1) } \\
& \text { and } \frac{x}{y-5}=3, \text { (2); }
\end{aligned}
$$

- from which $x=6$, and $y=7$.
(16) Let $x=A$'s age, and $y=B$'s.

Then $x+y+18=2 x$, (1), and $x-y-6=y, \quad(2)$; from which $x=30$, and $y=12$.
(11) Let $x=$ the greater, and $y=$ the less of the two numbers. Then $x+y=37, \quad(1)$,

$$
\text { and } \frac{4 x-3 y}{6}=6, \quad \text { (2); }
$$

from which $x=21$, and $y=16$.
(18) Let $x=$ the numerator, and $y=$ the denominator of ine fraction.

$$
\begin{align*}
& \text { Then } \frac{x-3}{y-3}=\frac{1}{4}, \tag{1}\\
& \text { and } \frac{x+5}{y+5}=\frac{1}{2}, \tag{2}
\end{align*}
$$

from which $x=7$, and $y=19$.
(19) Let $x=$ sum given to A , and $y=$ sum given to B .

Then $x-\frac{1}{4} x=\frac{3 x}{4}=$ A's capital at close of the year,
and $y+\frac{1}{4} y=\frac{5 y}{4}=B$'s capital at close of the year.
Then $x+y=2400$,

$$
\begin{equation*}
\text { and } \frac{3 x}{4}=\frac{5 y}{4}, \quad \text { (2) ; } \tag{1}
\end{equation*}
$$

from which $x=1500$, and $y=900$.
(20) Let $x=$ the less, and $y=$ the greater of the two numbery
Then $y-1=4 x, \quad$ (1), and $x+3=\frac{1}{3} y, \quad(2)$;
from which $x=8$, and $y=33$.
(21) Let $x=A$'s, and $y=B$'s.

Then $x+100=y-100$, (1),
and $2(x-100)=y+100$, (2);
from which $x=500$, and $\mathrm{B}=700$.
(22) Let $x=$ the greater, and $y=$ the less of the two numbers Then $5 x+7 y=198$, (1),

$$
\begin{equation*}
\text { and } \frac{x}{5}+\frac{y}{7}=6 \text {, } \tag{2}
\end{equation*}
$$

from which $x=20$, and $y=14$.
(23) Let $x=$ A's age, and $y=\mathrm{B}$'s.

Then $x-7$ and $y-7$, represent their ages 7 years ago; and $x+7$ and $y+7$, represent their ages 7 years hence. Therefore, $x-7=3(y-\%), \quad(1)$, and $x+7=2(y+7), \quad(2)$;
from which $x=49$, and $y=21$.
(24) Let $x=$ digit in ten's place, and $y=$ digit in unit's place

Then $10 x+y=$ the number,
and $10 y+x=$ the number inverted.
Therefore, $\frac{10 x+y}{x+y}=4$,
and $\quad 10 x+y+27=10 y+x$,
from which $x=3$, and $y=6$.
(25) Let $x=$ value of a lb. of the first, and $y=$ value of a lb of the second

$$
\begin{equation*}
\text { Then } x+y=20 \text {, } \tag{1}
\end{equation*}
$$

and $3 x+5 y=11(3+-5)=88$,
from which $x=6$, and $y=14$.
(26) Let $x=$ the number of lemons, and $y=$ the number of oranges.
Then $3 x+5 y=84$,
since by selling $\frac{1}{2}$ of the lemons and $\frac{1}{5}$ of the oranges for 40 cents he cleared 8 cents;
therefore, $\frac{3 x}{2}+\frac{5 y}{3}=40-8=32$, (2);
from which $x=8$, and $y=12$.
(27) Let $x=$ number of peaches and $y=$ number of apples. Ther $\frac{x}{4}=$ cost of the peaches, and $\frac{y}{5}=$ cost of the apples ;

$$
\begin{align*}
& \text { there fore, } \frac{x}{4}+\frac{y}{5}=30, \tag{1}\\
& \frac{1}{2} \text { of } \frac{x}{4}=\frac{x}{8}=\operatorname{cost} \text { of } \frac{1}{2} \text { the peaches; } \\
& \frac{1}{3} \text { of } \frac{y}{5}=\frac{y}{15}=\text { " " } \frac{1}{3} \text { the apples; } \tag{2}
\end{align*}
$$

therefore, $\frac{x}{8}+\frac{y}{15}=13$,
from which $x=72$, and $y=60$.
(28) Let $x=\mathrm{A}$'s money, and $y=\mathrm{B}$'s.

$$
\begin{align*}
& \text { Thus } x+\frac{1}{6} y=500, \tag{1}\\
& \text { and } y+\frac{1}{4} x=600, \tag{2}
\end{align*}
$$

from which $x=400$, and $y=500$.
(29) Let $x=$ number of yards in first piece, and $y=$ uumber of yards in 2 d .

from which $x=24$, and $y=20$.
(30) Let $x=$ the father's, and $y=$ the son's age.

Then $x-6=3 \frac{1}{3}(y-6)$, (1), and $x+3=22_{6}(y+3), \quad$ (2);
from which $x=36$, and $y=15$.
(31) Let $x=$ value of the first horse, and $y=$ value of the second.
Then $x+50=y+2+8, \quad$ (1);
$x+2=$ value of first horse with worst saddle,
$y+50=$ " " second " " best "
therefore, $y+50: x+2:: 15: 4$,
whence, $4(y+50)=15(x+2)$, (2);
from which $x=30$, und $y=70$.
(32) Let $x=$ number of bushels of oats, and $y=$ number of bushels of rye.
Then, by the 1 st condition, $x+6: y+6:: 7: 6$, whence $6(x+6)=7(y+6), \quad(1)$.
By the 2 d condition, $x-6: y-6:: 6: 5$, whence $5(x-6)=6(y-6)$. (2);
from which $x=78$, and $y=66$.
(33) Let $x=$ the length, and $y=$ the breadth.

Then by the 1st condition, $x+4: y+4:: 5: 4$,
whence $4(x+4)=\check{5}(y+4), \quad$ (1).
By the 2 d condition, $x-4: y-4 \cdot: 43$,
whence $3(x-4)=4(y-4)$, (2);
from which $x=36$, and $y=28$.
(34) Let $x=$ number of acres of tillable, and $y=$ number a^{*} acres of pasture.
Then $200 x+140 y=24500$, (1),
Alsn, $x: x-y:: 14: 9$,

$$
\text { whence } 9 x=14 x-14 y, \quad \text { (2) ; }
$$

from which $x=98$, and $y=35$.
Note. In forming equation (1), it is important for the pupil to putice that the quantities on both sides must be expressed in the same denomination, which, in this cuse, is cents.
(35) Let $x=$ number of A 's sheep, and $y=$ number of $B ' s$. Then, by the 1st condition, $x+10: y-20:: 4: 3$, whence $3(x+10)=4(y-20)$, (1).
Again $x+10-20=x-10=$ number in A's lock it end of 2 d year,
and $y-20+10=y-10=$ number in B 's flock at end of 2d year.
Then $x-10: y-10:: 6: 7$,
whence $7(x-10)=6(y-10)$,
from which $x=70$, and $y=80$.
(36) Let $x=$ number of gallons in first, and $y=$ number in secont.
By the lat condition, $x-15=\frac{2}{3}(y-15)$, (1), also(), $x-15-35=x-40$, and $y-15-25=y-40$;
therelore, by the 2d condition, $x-40=\frac{1}{2}(y-40)$, (2); from which $x=65$, and $y=90$.
(37) Let $x=$ the numerator, and $y=$ the denominator.

Then $\frac{x+1}{x+y}=\frac{1}{4}, \quad$ (1),
and $\frac{x+y}{y+1}=\frac{8}{y}, \quad$ (2);
from which $x=3$, and $y=13$.
(38) Representing the first two numbers by $5 x$ and $7 x$, and the other two by $3 y$ and $5 y$,
By the 1st condition we have $5 x+3 y: 7 x+5 y:: 9: 13$, whence $13(5 x+3 y)=9(7 x+5 y)$, (1);
the difference of their sums $=(7 x+5 y)-(5 x+3 y)=2 x$ $+2 y$,
therelore $2 x+2 y=16, \quad$ (2);
from which $x=6$, and $y=2$;
hence $5 x=30,7 x=42 ; 3 y=6$, and $5 y=10$.
(39) Let $x=$ number of bushels of rye, and $y=$ number ot bushels of wheat.

$$
\text { Then } 28+x+y=100, \quad \text { (1). }
$$

And $28 \times 28+36 x+48 y=100 \times 40=4000$, (2);
from which $x=30$, and $y=52$.
(40) Since $4 x$ and $5 x$ have the same ratio as 4 and 5 , let them represent the weights of the loaded wagrons. Also, let 64 and $7 y$, which have the same ratio as 6 and 7 , represent the parts of the loads taken ont.

```
Then 4x-6y:5x-7y : : 2 : 3,
whence 3(4x-6y)=2(5x-7y), (1),
and 4x-6y+5x-7y=10,
(2);
from which }x=4,\mathrm{ and }y=2\mathrm{ ;
hence 4x=16, and 5x=20.
```

(41) Let $x=$ number of gallons in first, and $y=$ number of gallons in second.
First. Second.

x	y
$\frac{y}{x-y}$	$-\frac{y}{2 y=\text { gals. in each after first pouring, }}$
$\frac{x-y}{2 x-2 y}$	$\frac{x-y}{3 y-x=\text { gals. in each after 2d pouring. }}$
$\frac{3 y-x}{3 x-5 y}$	$\frac{3 y-x}{6 y-2 x=\text { gals. in each after 3d pouring. }}$

Therefore, $3 x-5 y=6 y-2 x$, (1),
and $3 x-5 y=16$,
from which $x=22$, and $y=10$.
This question may be easily solved bv arithmetic, by reversing the operations, thus :

First.	Second.
16	$16=$ gals. in each after 3d pouring ;
8	8
24	$8=$ gals. in each after 2d pouring ;
$\frac{12}{12}$	12
12	$20=$ gals. in each after 1st pouring ;
10	10
22	$10=$ gals. in each before 1st pouring.

It is cvident that by the third pouring the number of gallons which the second vessel contained previously, was doubled; hence, by subtracting from it, half of what the second contained nfter the third pouring, and adding the same quantity to the first, we find what both contained previous to the second pouring. In the same manner, by subtracting from the first, half of what it contained after the second pouring, and adding the same quantito to the second, we find what each contained previous to the second pouring. Lastly, by subtracting from the second half of what it contained after the first pouring, and adding the same quantity to the first, we find what each originally contained.

QUESTIONS PRODUCINGEQUATIONS CONTAINING THREE OR MORE UNKNOWN QUANTITIES.

Article 163.

(2) Let x, y, and z represent the numbers.

$$
\begin{aligned}
\text { Then } x+y=27, & (1) \\
x+z=32, & (2) \\
\text { and } y+z=35, & \text { (3) }
\end{aligned}
$$

from which $x=12, y=15$, and $z=20$.
(3) Let x, y, and z represent the numbers.

$$
\begin{align*}
\text { Then } x+y+z & =59, \\
\frac{x-y}{2}=5, & \text { (1) } \\
\frac{x-z}{2}=9, & \text { (3); } \tag{2}
\end{align*}
$$

from which $x=29, y=19$, and $z=11$.
We have assumed that the first number is greater than the second or third; but a correct result will be as readily obtained by supposing the third number greater than the first or second.
(4) Let x, y, and z represent the numbers.

$$
\begin{align*}
\text { Then } & x+\frac{1}{2} y=14, \tag{1}\\
& y+\frac{1}{3} z=18, \tag{2}\\
\text { and } & z+\frac{1}{4} x=20, \tag{3}
\end{align*}
$$

from which $x=8, y=12$, and $z=18$.
(5) Let x, y, and z represent the prices respectively of the three watches.
Then $x+\frac{y+z}{2}=25$, (1),

$$
\begin{equation*}
y+\frac{x+z}{3}-26 \tag{2}
\end{equation*}
$$

and $\quad z+\frac{x+z}{2}=29, \quad$ (3);
from which $x=8, y=18$, and $z=16$.
(6) Let x, y, and z represent the three numbers.

Then $x+\frac{y+z}{3}=25$, (1),

$$
\begin{equation*}
y+\frac{x+z}{4}=25 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
=-1-\frac{x+y}{5}=25 \tag{3}
\end{equation*}
$$

from which $x=13, y=17$, and $z=19$.
(7) Let $v=$ cost uf an apple, $x=$ cost of a pear, $y=$ cost of a peach, and $z=$ cosi of an orange.
Then $2 u+5 x=12$,
(1),
$3 x+4 y=18$,
(2),
$4 x+5 z=28$,
and $5 y+6 z=39$,
from which $v=1, x=2, y=3$, and $z=4$.
(8) Let $x=$ A's money, $y=\mathrm{B}$'s, and $z=$ C's.

Then $x+y=\frac{2}{3} z$, (1),

$$
\begin{equation*}
y-+z=6 x \tag{2}
\end{equation*}
$$

$x+z=y+680$,
(3)
from which $x=200, y=360$, and $z=840$.
(9) Let $x=\mathrm{A}$'s money, $y=\mathrm{B}$'s, and $z=\mathrm{C}$'s.

Then $x+y+z=1820$, (1), $x+200=y-200+160,(2)$,
and $y+70=z-70, \quad(3)$;
from which $x=400, y=640$, and $z=780$.
(10) Let $x=\mathrm{A}$'s money, $y=\mathrm{B}$'s, and $z=\mathrm{C}$'s.

Then $x+700=2(y-700)$, (1),
$y+1400=3(z-1400), \quad(2)$,
and $z+420=5(x-420)$, (3);
from which $x=980, y=1540$, and $z=2380$.
(11) Let x, y, and z, represent the digits in hundred's, ten's, and unit's places respectively.
Then $100 x+10 y+z$ represents the number.
Therefore $\quad x+y+z=11$, (1), $z=2 x, \quad$ (2),
and $100 x+10 y+z+297=100 z+10 y+x$, (3):
from which $\quad x=3, y=2$, and $z=6$.
(12) Let $x=\mathrm{A}$'s money, $y=\mathrm{B}$'s, and $z=\mathrm{C}$'s.

Then $x+y+z=2000$, (1),

$$
\begin{align*}
& y+200=z+100, \tag{2}\\
& y-100={ }_{4}^{3} z,
\end{align*}
$$

from which $x=500, y=700$, and $z=800$.
(13) Let x, y, and z represent the numbers.

Then $x+y+z=83$, (1),

$$
x-7: y-7:: 5: 3
$$

wherice $3(x-7)=5(y-7), \quad$ (2),

$$
y-3: z-3:: 11: 9
$$

whence $9(y-3)=11(z-3), \quad(3)$;
from which $x=37, y=25$, and $z=21$.
(14) Let $x=\mathrm{A}$'s share, $y=\mathrm{B}$'s, and $z=\mathrm{C}$'s.

Then $x+y+z=180$, (1),
$2 x+80=3 y+40, \quad(2)$,
and $2 x+80=4 z+20, \quad(3)$;
from which $x=70, y=60$, and $z=50$.
(15) Let x, y, and z represent the numbers.

Then $x+y+z=78$,
(1) ;
$\frac{1}{3} x: \frac{1}{4} y: 1: 2$,
whence $\quad \frac{2}{3} x=\frac{1}{4} y$,
$\frac{1}{4} y: \frac{1}{5} z: 2: 3$,
whence $\quad \frac{3}{4} y=\frac{2}{5} 2$,
from which $x=9, y=24$, and $z=45$.
(16) Let $x=A$'s share, $y=\mathrm{B}$'s, and $z=\mathrm{C}$'s.

Then $x-\frac{4}{7}(y+z)=30$,
$y-\frac{3}{8}(x+z)=30$,
and $z-\frac{2}{9}(x+y)=30$,
from which $\quad x=150, y=120$, and $z=90$.
(17) Let u^{\prime}, y, and z, represent the days respectively, in which A, B and C each, alone, can perform the work.
Then since A can do it in x days, he can do $\frac{1}{x}$ part in 1 day. In like manner B can do $\frac{1}{y}$ part of it, and $\mathrm{C}, \frac{1}{z}$ part of it in I day. Also, since A and B can perform the work in 12 days, they cant perform T^{\prime} of it in I one day. For a like reason A and C can perform $\frac{1}{13}$, and B awd C $\frac{1}{20}$ in 1 day.
Th refore, $\frac{1}{x}+\frac{1}{y}=\frac{1}{12}$,
$\frac{1}{x}+\frac{1}{z}=\frac{1}{15}$,

$$
\operatorname{an} \mathbf{~} \frac{\mathbf{1}}{y}+\frac{1}{z}=\frac{1}{20}
$$

By subtracting Eq. (2) from (1) we have

$$
\frac{1}{y}-\frac{1}{2}=1_{1}^{1}-1_{15}^{1}=6_{6}^{1}, \quad \text { (4); }
$$

by adding equations (4) and (3) together

$$
\begin{gathered}
\frac{2}{y}=\frac{1}{2} \frac{1}{2}+\frac{1}{60}=\mathrm{T}^{1} 5, \\
\text { or } y=30, \text { by clearing of fractions. }
\end{gathered}
$$

By subtracting equation (4) from (3)

$$
\begin{align*}
\frac{2}{z} & =\frac{1}{2} \sigma-\sigma^{\frac{1}{0}}==_{3}^{\frac{1}{0}}, \tag{6}\\
\text { or } z & =60, \text { by clearing of fractions. }
\end{align*}
$$

The value of x may be found by substituting the value of y in Eq. (1), or by subtracting Eq. (3) from (2), and adding the result. ing equation and Eq. (1) together.

Note. For another method of finding the values of the unknown quantities after the equations are formed, see Art. 169, Example 1st.
(18) Let $x=$ digit in hundred's place, $y=$ digit in ten's place, and $z=$ digit in unit's place.

Then $100 x+10 y+z=$ the number, also $\frac{100 x+10 y+z}{x+y+z+9}=19$, (1), $y=\frac{x+z}{2}, \quad$ (2),

$$
\begin{equation*}
\text { and } 100 x+10 y+z+198=100 z+10 y+x \text {, } \tag{3}
\end{equation*}
$$ from wbich $x=4, y=5$, and $z=6$.

(19) Let $x=$ bushels of barley, $y=$ bushels of rye, and $z=$ bushels of wheat.

Then $x+y+z=100$, (1), $28 x+36 y+48 z=4000$, (2), $28 x+36 \times 2 y+48(z+10)=40(100+y+10)$, by reducing, $28 x+32 y+48 z=3920$, (3); from which $x=28, y=20$, and $z=52$.
(20) Let x, y, and z represent the birds respectively which A_{1} B, and C killed.

Therefore $x-y+z=96$, (1),

$$
\begin{aligned}
& 4 x-4 y-4 z=32, \quad(2) ; \\
& 6 y-2 x-2 z=32,
\end{aligned}
$$

from which $x=52, y=28$, and $z=16$
By reversing the operation, as in the solution of example 41 page 31, this question is easily solved by arithmetic thus:

A	B	C.	
32	32	32,	at close of 3d division ;
16	16	32	
16	16	64	at close of 2 d division ;
8	40	32	
8	56	32	at close of 1st division ;
44	28	16	
52	28	16	previous to the 1st divisi

Since each had an equal number after the third division, therefore, each must have had $\frac{1}{5}$ of 96 , which is 32 . And since, in making the third division C gave to A and B as many as they had, it is evident that before the third division, that is, after the second division, A and B must each have had $\frac{1}{2}$ of 32 , which is 16 , and C 32 , and what A and B received at the third division, making in all 64. By reasoning in a similar manner we find what each had previous to the other divisions.

GENERALIZATION.

Article 170.

GENERAI PROBLEMS.
(1) Let $x=$ one of the parts, then $a-x$ will be the other. Therefore, $\quad x=n(a-x)=n a-n x$,
transposing, $n x+x=n a$, factoring, $(n+1) x=n a$,
dividing,

$$
\begin{gathered}
x=\frac{n a}{n+1} ; \\
a-x=a-\frac{n a}{n+1}=\frac{n a+a-n a}{n+1}=\frac{a}{n+1}
\end{gathered}
$$

(2) Let $x=$ one of the parts, then $a-x$ will be the other. Therefore, $\quad m x=n(a-x)=n a-n x$, transposing, $m x+n x=n a$,
factoring, $\quad(m+n) x=n a$,
dividing,

$$
x=\frac{n a}{m+n}
$$

$$
a-x=\frac{m a+n a}{m+n}-\frac{n a}{m+n}=\frac{m a}{m+n} .
$$

(3) Let $x=$ one part, then $a-x$ will be the other.

Then $m x+n(a-x)=b$.
trans. and fact'ng, $(m-n) x=b-n a$,

$$
\text { dividing, } x=\frac{b-n a}{m-n} \text {; }
$$

(4) Let $x=$ the number.

$$
a-x=\frac{m a-n a}{m-n}-\frac{b-n a}{m-n}=\frac{m a-b}{m-n}
$$

Then $\frac{x}{m}+\frac{x}{n}=a$,
$n x+m x=m n a$, by clearing of fractions,
whence $\quad x=\frac{m n a}{m+n}$.
(5) Let $x=$ the first part; then $m x=$ the second, and $n x=$ the third part.
Therefore, $x+m x+n x=a$, factoring, $(1+m+n) x=a$,

$$
\begin{aligned}
x & =\frac{a}{1+m+n} \\
m x & =\frac{m a}{1+m+n} \\
n x & =\frac{n a}{1+m+n}
\end{aligned}
$$

(6) Let, $x=$ one part, then $a-x=$ the other.

Then $\frac{x}{b}+\frac{a-x}{c}=d$;
$c x+a b-b x=b c d$, by clearing of fractions,
$c x-b x=b c d-a b$, by transposing,
or, $\quad b x-c x=a b-l c d$, by changing the sirgns of all the terms on both sides.

$$
\begin{aligned}
(b-c) x & =b(a-c d), \\
x & =\frac{b(a-c d)}{b-c} ; \\
a-x & =\frac{a(b-c)}{b-c}-\frac{h(a-c d)}{b-c}=\frac{c(b d-a)}{b-c} .
\end{aligned}
$$

(7) Let $x=$ the number.

Then $a+x: b+x:: m: n$,
whence $n(a+x)=m(b+x)$;
transposing, $n x-m x=m b-n a$,

$$
x=\frac{m b-n a}{n-m} .
$$

(8) Let $x=$ the number.

Then $a-x: b-x:: m: n$, whence $\quad n(a-x)=m(b-x)$.
transposing, $m x-n x=m b-n a$,

$$
x=\frac{m b-n a}{m-n} \text {, or } \frac{n a-m b}{n-m} \text {. See Art. } 132
$$

(9) Let $x=$ the number.

Then $a+x \quad b-x:: m: n$,
whence $\quad n(a+x)=m(b-x)$, transposing, $m x+n x=m b-n a$,

$$
x=\frac{m^{2}-n a}{m+n} .
$$

(10) Let $x=$ the number of dollars he had at first.

Then $x-\frac{1}{m} x-\frac{1}{n} x=a$,
$m n x-n x-m x=m n a$, by clearing of fractions;
$(m n-m-n) x=m n a$, $x=\frac{m n a}{m n-m-n}$.
(11) Let $x=$ the quantity.

Then $\frac{m}{n} x-\frac{p}{q} x=a$,
$m q x-n p x=a n q$, by elearing of fractions;

$$
x=\frac{a n q}{m q-n p} .
$$

(12) Let $x=$ the number of persons.

Then $a x=$ the number of cents paid;
also $\quad(x-b) c=$ the number of eents paid;
therefore, $(x-l) c=a x$;
$r x-a x=b c$,

$$
x=\frac{b c}{c=a} .
$$

(13) Let $x=$ the number of persons.

Then $a x+b=$ the number of cents the person had, also $\quad c x+d=$ the number of cents the persoa had; Therefore $a x+h=c x+d$;

$$
\begin{aligned}
(a-c) x & =d-b, \text { by transposing ; } \\
x & =\frac{d-b}{a-c} .
\end{aligned}
$$

(14) Let $x=$ the number of bushels of oats, then $n-x=$ tne number of bushels of rye.
Then $\quad a x=$ eost of x bushels at a cents per bushel ; ($n-x) b=$ cost of $n-x$ bushels at b cents per bushel ; thercfore $a x+(n-x) b=n c$,

$$
\begin{aligned}
(a-b) x & =n c-n b=n(c-b), \\
x & =\frac{n(c-b)}{a-b} ; \\
n-x & =\frac{n(a-b)}{a-b}-\frac{n(c-b)}{a-b}=\frac{n(a-c)}{a-b} .
\end{aligned}
$$

(15) Let $x=$ the money he had in his purse. $x+x=2 x$, then $2 x-a=$ money he had after 1st spending;
$2 x-a+(2 x-a)-a=4 x-3 a=$ noney after 2 d spnd'g ; $4 x-3 a+(4 x-3 a)-a=8 x-7 a=$ money after 3d spnd'g; $8 x-7 a+(8 x-7 a)-a=16 x-15 a=$ money after 4th " Therefore $16 x-15 a=0$, $16 x=15 a$, $x=15 a$.
(16) Let $x=$ number of pieces of 1st kind, then $c-x=$ number of pieces of second kind.
Since a pieces of the first kind make 1 dollar, or 100 ets. therefore $\frac{100}{a}=$ value in cents of a piece of the first kind. In like manner $\frac{100}{b}=$ value in cents of a piece of the second.
$\frac{100}{a}-x=$ value in cents of x pieces of first kind.
$\frac{100}{b}-(c-x)=$ value in cents of $(c-x)$ pieces of the second kind.

Therefore $\frac{100}{a}-x+\frac{100}{b}-(c-x)=100$;

$$
\frac{x}{a}+\frac{c-x}{b}=1 \text {, by dividing both sides }
$$

by 100 ;

$$
\begin{aligned}
b x+a c-a x & =a b, \text { by clearing of fractions. } \\
(b-a) x & =a(b-c) ; \\
x & =\frac{a(b-c)}{b-a} . \\
:-x=\frac{c(b-a)}{b-a}-\frac{a(b-c)}{b-a} & =\frac{b(c-a)}{b-a} .
\end{aligned}
$$

To illustrate this question by numbers, take the iollowing: How many 5 and 25 cent pieces must be taken, so that 8 shall make a dollar !

Ans. 5 five cent pieces, and 3 twenty-five cent pieces.

Article 171.

(11) I.et $x=$ the less number ; then $x+2=$ the greater.

Therefore $x(x+2)=x^{2}+8$,

$$
\text { whence } x=4 \text {, and } x+2=6 \text {. }
$$

(12) Let $x=$ the greater part, then $a-x=$ the less.

$$
\text { Therefore } x^{2}-(a-x)^{2}=c
$$

whence

$$
x=\frac{a^{2}+c}{2 a} \text {, and } a-x=\frac{a^{2}-c}{2 a} \text {. }
$$

(13) Let $x=$ number of pages, and $y=$ number of lines on a page ; then $x y=$ number of lines in the book.
Therefore $(x+5)(y+10)=x y+450, \quad(1)$, and $\quad(x-10)(y-5)=x y-450, \quad$ (2); from which we find $\quad x=20$, and $y=40$.

Article 172.

REGATIVE SOLUTIONS.

'Hunciation of questions 2, 3, 4, and 5, so that the results will be true in an arithmetical sense.
2. What number must be adied to 20 , that the sum may be 25 ? Ans. 5.
3. What number must be subtracted from 11, that the remair. der being multiplied by 5 , the product shall be 40 ?

Ans. 3
4. What number is that, of which the $\frac{2}{3}$ is less than the the $\frac{3}{4}$ by 3 ?

Ans. 36.
5 A father, whose age is 45 years, has a son zged 15 ; hono many years since, was the son $\frac{1}{4}$ as old as his father?

Ans. ${ }^{2}$.

RADJCALS OF THE SECOND DEGREE.

Note. All the examples in the formation of powers, and extraction of the square noot, being performed by diect, straightforward methods of operation, ean present but few difficulties, if any, to the eareful student. In the examples Art. 196, before commencing the operation tho pupil must be careful to arrange the terms of the polynomial with reference to a certain letter.

Article 199.

REDUCTION OF RADICALS OF THE SECOND DEGREE.

$$
\begin{equation*}
\sqrt{8 a^{2}}=\sqrt{4 a^{2} \times 2}=\sqrt{ } 4 a^{2} \times \sqrt{ } 2=2 a \sqrt{ } 2 \tag{1}
\end{equation*}
$$

$\sqrt{12 a^{3}}=\sqrt{4 a^{2} \times 3 a}=\sqrt{4 a^{2}} \times \sqrt{ } 3 a=2 a \sqrt{ } 3 u$.

$$
\begin{equation*}
\sqrt{16 a^{3} b}=\sqrt{16 a^{2}} \times a b=\sqrt{16 a^{2}} \times \sqrt{ } a b=4 a \sqrt{ } a b \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \sqrt{18 a^{4} b^{3} c^{3}}=\sqrt{9 a^{4} b^{2} c^{2}} \times 2 b c \tag{4}
\end{align*}=\sqrt{9 a^{4} b^{2} c^{2}} \times \sqrt{2 b c} .
$$

Remark. It is not necessary that the seeond step of the operation phould always be written down, as in the preeeding solutions; it should be done, however, by the pupil, on the slate or blackboard, until the prineiples are well understood.

$$
\begin{equation*}
4^{3 \sqrt{24 a^{4} c^{2}}}=3 \sqrt{4 a^{4} c^{2} \times \overrightarrow{6}}=3 \times 2 a^{2} c \sqrt{6}=6 a^{2} c \sqrt{6} . \tag{6}
\end{equation*}
$$

(7) $4 \sqrt{27 a^{3} c^{3}}=4 \sqrt{9 a^{2} c^{2} \times 3 a c}=4 \times 3 a c \sqrt{3 a c}=12 a c \sqrt{3 a c}$.
(8) $7 \sqrt{28 a^{5} c^{2}}=7 \sqrt{4 a^{4} c^{2} \times 7 a}=7 \times 2 a^{2} c \sqrt{7 a}=14 a^{2} c \sqrt{7 a}$.
(9) $\sqrt{32 a^{6} b^{2} c^{4}}=\sqrt{16 a^{6} b^{2} c^{4} \times 2}=\quad-\quad 4 a^{3} b c^{2} \sqrt{ }$.
(10) $\sqrt{40 a^{2} b^{3} c^{5}}=\sqrt{4 a^{2} b^{2} c^{4} \times 10 b c}=-\quad-2 a b c^{2} \sqrt{10} b c$.
(11) $\sqrt{44 a^{5} b^{3} c}=\sqrt{4 a^{4} b^{2} \times 11 a b c}=\quad-\quad 2 a^{2} b \sqrt{11 a b c}$
(12) $\sqrt{\overline{45 a^{4} b^{6} c^{4}}}=\sqrt{9 a^{4} b^{6} c^{4} \times \overline{5}}=\quad-\quad-3 a^{2} b^{3} c^{2} \sqrt{5}$.
(13) $\sqrt{48 a^{8} b^{6} c^{4}}=\sqrt{16 a^{8} b^{6} c^{4} \times 3}=\quad$ - \quad. $4 a^{4} b^{3} c^{2} \sqrt{ } 3$.
(14) $\sqrt{75 a^{3} / l^{8} c^{3}}=\sqrt{25 a^{2} b^{2} c^{2} \times 3 a b c}=-\quad-5 a b c \sqrt{3 a b b_{1}}$.
(15) $\sqrt{128 a^{6} b^{4} c^{2}}=-\sqrt{64 a^{6} b^{3} c^{2} \times 2}=-\quad-8 a^{3} b^{2} c \sqrt{2 .}$
(16) $\sqrt{243 a^{3} b^{2} c}=\sqrt{81 a^{2} b^{2} \times 3 a c}=\quad-9 a b \sqrt{3 a c .}$

(19) $\sqrt{\frac{2}{8}}=\sqrt{\frac{7}{8} \times \frac{2}{2}}=\sqrt{\frac{1}{16} \times 14}=\quad-\quad \frac{1}{4} \sqrt{14}$.
(20) $\sqrt{\frac{1}{2} \frac{2}{5}}=\sqrt{\frac{4}{2} 5 \times 3}=\quad$ - - $\frac{2}{5} \sqrt{ } 3$.
(21) $\sqrt{\frac{1}{18}}=\sqrt{\frac{1}{1} \frac{1}{8} \times \frac{2}{2}}=\sqrt{\frac{1}{36} \times 22}=-\quad-\frac{1}{6} \sqrt{22}$.
(22) $9 \sqrt{\frac{1}{2} \frac{6}{9}}=9 \sqrt{\frac{1}{2} \frac{6}{2} \times \frac{3}{3}}=9 \sqrt{\frac{16}{81} \times 3}=9 \times \frac{4}{9} \sqrt{3}=4 \sqrt{ } 3$.
(23) $5 \sqrt{\frac{9}{10}}=5 \sqrt{\frac{9}{10} \times 10}=5 \sqrt{\frac{9}{10} \times 10}=5 \times \frac{9}{10} \sqrt{10}=\frac{5}{2} \sqrt{10}$.
(24) $10 \sqrt{\frac{3}{5} 0}=10 \sqrt{\frac{3_{0}^{3}}{3} \times \frac{2}{2}}=10 \sqrt{\frac{1}{10} \times 6}=10 \times \frac{9}{10} \sqrt{6}=\sqrt{ } 6$.
(25) $7 \sqrt{\frac{3}{28}}=7 \sqrt{\frac{3}{28} \times \frac{7}{7}}=7 \sqrt{\frac{1}{1 \frac{1}{6}} \times 2} 1=7 \times \frac{1}{14} \sqrt{21}=\frac{1}{2} \sqrt{ } 21$.
(26) $5=\sqrt{5 \times 5}=\quad-\quad-\quad-\sqrt{2.5}$.
(27) $2 a=\sqrt{2 a \times 2 a}=-\quad-\quad-\quad \sqrt{4 a^{2}}$.
(28) $3 \sqrt{5}=\sqrt{3 \times 3 \times \sqrt{5}}=\sqrt{3 \times 3 \times 5}=-\quad-\sqrt{ } 45$.
(29) $3 c \sqrt{ } 2 c=\sqrt{3 c \times 3 c \times 2}=-\quad-\quad-\sqrt{ } 18 c^{1}$
(30) $5 \sqrt{ } 3=\sqrt{ } 5 \times 5 \times 3=\quad-\quad-\quad \sqrt{75}$.

Article 200.

ADDITION OF RADICALS OF THE SECOND DEGRES.
(3) $\begin{aligned} \sqrt{8} & =2 \sqrt{2} \\ \sqrt{18} & =3 \sqrt{2} \\ \text { Sum } & =5 \sqrt{2}\end{aligned}$

(4) | $\sqrt{ } 12$ | $=2 \sqrt{3}$ |
| ---: | :--- |
| $\sqrt{27}$ | $=3 \sqrt{3}$ |
| Sum | $=5 \sqrt{3}$ |

(5) $\begin{aligned} \sqrt{ } 20 & =2 \sqrt{ } B \\ \sqrt{ } 80 & =4 \sqrt{ } 5 \\ \text { Sum } & =6 \sqrt{ } 5\end{aligned}$
(b) $\sqrt{ } 24=2 \sqrt{ } 6$
(7) $\begin{aligned} \sqrt{ } 8 & =2 \sqrt{ } 2 \\ \sqrt{32} & =4 \sqrt{ } 2 \\ \sqrt{50} & =5 \sqrt{2} \\ - \text { Sum } & =11 \sqrt{ } 2\end{aligned}$

(8) | $\sqrt{ } 40$ | $=2 \sqrt{ } 10$ |
| ---: | :--- |
| $\sqrt{ } 90$ | $=3 \sqrt{ } 10$ |
| $\sqrt{ } 250$ | $=5 \sqrt{ } 10$ |
| Sum | $=10 \sqrt{10}$ |

(9) $\sqrt{28 a^{2} b^{2}}=2 a b \sqrt{ } 7$
(10) $\sqrt{75 a^{2} c=}=5 a \sqrt{3} c$
(11) $\sqrt{\frac{1}{3}}=\frac{1}{3} \sqrt{3}$ $\begin{aligned} \sqrt{12 a^{2} b^{2}} & =4 a b \sqrt{7} \\ \text { Sum } & =6 a b \sqrt{7}\end{aligned}$ $\begin{aligned} \sqrt{147 a^{2} c} & =7 a \sqrt{ } 3 c \\ \text { Sum } & =12 a \sqrt{ } 3 c\end{aligned} \quad \frac{\sqrt{2}{ }^{3}=\frac{1}{5} \sqrt{3}}{\text { Sum }}={ }_{1}^{8} 5 \sqrt{3}$
(12) $\sqrt{\frac{1}{5}}=\frac{1}{5} \sqrt{5}$
(13) $\sqrt{\frac{1}{8}}=\frac{1}{2} \sqrt{2}$
(14) $2 \sqrt{\frac{3}{4}}=\sqrt{3}$

$$
\frac{\sqrt{5^{5}}=\frac{1}{2} \sqrt{5}}{\text { Sum }=\frac{1}{3} \frac{2}{5} \sqrt{5}}
$$

$$
\frac{\sqrt{8}=2 \sqrt{2}}{\text { Sum }=2 \frac{1}{2} \sqrt{2}}
$$

$$
\frac{3 \sqrt{12}=6 \sqrt{3}}{\text { Sum }=7 \sqrt{3}}
$$

(15) $\frac{1}{2} \sqrt{\frac{1}{2}}=\frac{1}{1} \sqrt{2}$
(16) $3 \sqrt{ }{ }^{2}=\sqrt{ } 6$
(17) $\sqrt{ } 48 a^{2} c^{2} x=4 a c \sqrt{ } 3 x$ $\frac{3 \sqrt{2}=3 \sqrt{2}}{\text { Sum }=\sqrt{2}} \quad \frac{7 \sqrt{2}{ }_{50}^{3}=1 \frac{1}{4} \sqrt{6}}{\text { Sum }={ }_{10}^{3} \frac{1}{6} \sqrt{6}}$
$\frac{\sqrt{12 b^{2} x-2 b \sqrt{3 c}}}{\text { Sum }=(4 a c+2 b) \sqrt{3} c}$

$$
\begin{align*}
& \left.\sqrt{ }\left(2 a^{3}-4 a^{2} c+2 a c^{2}\right)=\sqrt{\left(a^{2}-2\right.} a c+c^{2}\right) \times 2 a=(a-c) \sqrt{2 a} \tag{18}\\
& \sqrt{\left(2 a^{3}+4 a^{2} c+2 a c^{2}\right)=\sqrt{\left(a^{2}+2 a c+c^{2}\right)} \times 2 a=(a+c) \sqrt{2 a}} \\
& \text { (19) } \sqrt{a+x}=\sqrt{a+x} \\
& \text { Sum }=2 a \sqrt{2 a} \\
& \frac{. \sqrt{a x^{2}+x^{3}}=x \sqrt{a+x}}{\sqrt{(a+x)^{3}}=(a+x) \sqrt{a+x}} \\
& \text { Sum }=(1+a+2 x) \sqrt{a+x}
\end{align*}
$$

Article 201.

SUBTRACIION OF RADICALSOF THE SECOMD DEGREE.
(2) $\sqrt{18}=3 \sqrt{2}$
(3) $\sqrt{45 a^{2}}=3 a \sqrt{5}$
(4) $\sqrt{54 \bar{i}}=3 \sqrt{6 b^{\circ}}$
$\frac{\sqrt{2}=\sqrt{2}}{\text { Dif. }}=2 \sqrt{2}$.
$-\frac{\sqrt{5} a^{2}=a \sqrt{5}}{\text { Dif. }=2 a \sqrt{5}}$
$\sqrt{ } 6 b=\sqrt{6 b}$
Dif. $=2 \sqrt{6 b}$
(5) $\sqrt{112 a^{2} c^{2}}=4 a c \sqrt{7}$
$\frac{\sqrt{28 a^{2} c^{2}}=2 a c \sqrt{ } 7}{\text { Dif. }=2 a c \sqrt{ } 7}$
(6) $\sqrt{27 b^{3} c^{3}}=3 b c \sqrt{3} \vec{b}$
$\begin{aligned} \sqrt{12 b^{3}} c^{3} & =2 b c \sqrt{3 b c} \\ \text { Dif. } & =b c \sqrt{3} b c\end{aligned}$
(7) $\sqrt{36 a^{5}}=6 a^{2} \sqrt{ } a$
$\frac{\sqrt{4 a^{3}}=2 a^{2} \sqrt{a}}{\text { Dif. }=4 a^{2} \sqrt{a}}$
(8) $\sqrt{49 a b^{3} c^{2}}=7 b c \sqrt{a b}$ $\sqrt{25 a b^{3} c^{2}}=5 b c \sqrt{a b}$
Dif. $=2 b c \sqrt{ } a h$
(9) $\sqrt{160 a^{3} b^{3} c}=4 a b \sqrt{10 a b c}$
$\frac{\sqrt{ } 10 a^{3} b^{3} c=a b \sqrt{ } 10 a b c}{\text { Dif. }=3 a b \sqrt{10 a b c}}$
(10) $5 a \sqrt{27}=15 a \sqrt{ } 3$ $\frac{3 a \sqrt{ } 48=12 a \sqrt{ }{ }^{\prime} 3}{\text { Dif. }=3 a \sqrt{ } 3}$
(11) $2 \sqrt{ } \frac{3}{4}=\sqrt{ } 3$
(12) $\sqrt{5}=\frac{1}{6} \sqrt{30}$
(13) $\sqrt{12=2 \sqrt{3}}$
$\frac{\sqrt{\frac{1}{2} \frac{1}{7}}=\frac{1}{9} \sqrt{ } 30}{\text { Dif. }=1 \frac{1}{8} \sqrt{30}}$
$\begin{aligned} \sqrt{\frac{3}{4}}= & =\frac{1}{2} \sqrt{3} \\ \text { Dif. } & =\frac{3}{2} \sqrt{3}\end{aligned}$
(14) $3 \sqrt{\frac{1}{2}}=\frac{3}{2} \sqrt{2}$
(15) $\sqrt{\frac{2}{3}}=\frac{1}{3} \sqrt{6}$
(16) $\sqrt{4 a^{2} x}=\square a \sqrt{x}$ $\frac{\sqrt{2}=\sqrt{2}}{\text { Dif. }=\frac{1}{2} \sqrt{2}} \quad \frac{\sqrt{2} \frac{2}{27}=\frac{1}{9} \sqrt{6}}{\text { Dif. }=\frac{2}{2} \sqrt{6}} \quad$ Dif. $=(2 a-a x) \sqrt{x}$

$$
\begin{align*}
\sqrt{3 m^{2} x+6 m n x+3 n^{2} x} & =(m+n) \sqrt{ } 3 x \tag{17}\\
\sqrt{3 m^{2} x-6 m n x+3 n^{2} x} & =(m-n) \sqrt{ } 3 x \\
\text { Dif. } & =2 n \sqrt{3 x}
\end{align*}
$$

Article 202.

MULTIPLICATION OF RADICALSOF THE SECOND DEGREE.
(3) $\sqrt{ } 8 \times \sqrt{2}=\sqrt{16}=4$.
(4) $2 \sqrt{ } a \times 3 \sqrt{ } a=6 \sqrt{ } a^{2}=6 a$.
(5) $\sqrt{27} \times \sqrt{ } 3=\sqrt{ } 81=9$.
(6) $3 \sqrt{ } 2 \times 2 \sqrt{ } 3=6 \sqrt{ } 6$.
(7) $3 \sqrt{ } 3 \times 2 \sqrt{ } 3=6 \sqrt{9}=18$.
(8) $\sqrt{ } 6 \times \sqrt{ } 15=\sqrt{ } 90=3 \sqrt{10}$
(9) $2 \sqrt{ } 15 \times 3 \sqrt{35}=6 \sqrt{3 \times 5 \times 5 \times 7}=30 \sqrt{ } 21$.
(10) $\sqrt{a^{3} b^{5} c} \times \sqrt{ } a b c=\sqrt{a^{4} b^{6} c^{2}}=a^{2} b^{3} c$.
(11) $\sqrt{\frac{1}{3}} \times \sqrt{3}=\sqrt{\frac{1}{4}}=\frac{1}{2}$.
(12) $\sqrt{\frac{2}{5}} \times \sqrt{\frac{8}{9}}=\sqrt{\frac{1}{4} \frac{6}{5}}=\sqrt{\frac{1}{2} \frac{6}{25} \times 5}=\frac{4}{15} \sqrt{5}$.
(13) $2 \sqrt{\frac{a}{5}} \times 3 \sqrt{\frac{a}{10}}=6 \sqrt{\frac{a^{2}}{50}}=6 \sqrt{\frac{a^{2}}{100} \times 2}=\frac{6 a}{10} \sqrt{ } 2=\frac{3 a}{5} \sqrt{ } 2$.

> (14) | $2+\sqrt{ } 2$ |
| :--- |
| $\frac{2-\sqrt{ } 2}{} \begin{array}{l}4+2 \sqrt{ } 2 \\ -2 \sqrt{ } 2-2 \\ 4-2=2 .\end{array}$ |

(15) $1+\sqrt{ } 2$
$\frac{1-\sqrt{2}}{1+\sqrt{2}}$
$\frac{-\sqrt{2-2}}{1-2=-1 .}$
(16) $\sqrt{x+2} \times \sqrt{x-2}=\sqrt{(x+2)(x-2)}=\sqrt{x^{2}-4}$.
(17) $\sqrt{a+x} \times \sqrt{a+x}=\sqrt{(\overline{a+x})(a+x)}=a+x$.
(18) $\sqrt{a b+b x} \times \sqrt{a b-b x}=\sqrt{(a b-b x)(a b-\overline{b x})}=\sqrt{a^{2} b^{2}-b^{2} x^{2}}$

$$
\begin{equation*}
\sqrt{x+2} \times \sqrt{x+3}=\sqrt{(x+2)(x+3)}=\sqrt{x^{2}+5 x+6} \tag{19}
\end{equation*}
$$

(20) $c \sqrt{ } a+d \sqrt{ } b$
(21) $7+2 \sqrt{6}$
$\frac{c \sqrt{ } a-d \sqrt{ } b}{c^{2} a+c d \sqrt{ } a b}$
$\frac{9-5 \sqrt{ } 6}{63+18 \sqrt{6}}$
$\frac{-c d \sqrt{ } a b-d^{2} b}{c^{2} a}-d^{2} b$.
$\frac{-35 \sqrt{ } 6-10 \times 6}{3-17 \sqrt{ } 6}$
(22) $\sqrt{a+x}+\sqrt{a-x}$
(23) $x+2 \sqrt{ } a x+a$
$\frac{\sqrt{a+x}-\sqrt{a-x}}{(a+x)+\sqrt{\left(a^{2}-x^{2}\right)}}$ $\frac{x-2 \sqrt{ } a x+a}{x^{2}+2 x \sqrt{a x+}-a x}$ $\frac{-\sqrt{ }\left(a^{2}-x^{2}\right)-(a-x)}{(a+x)-(a-x)=2 x .} \begin{array}{r}-2 x \sqrt{ } a x-4 a x-2 a \sqrt{ } a x \\ +a x+2 a \sqrt{ } a x+a^{2} \\ x^{2}\end{array}$
(24) $\quad x^{2}-x \sqrt{2}+1$

$$
\begin{aligned}
& \frac{x^{2}+x \sqrt{ } 2+1}{x^{4}-x^{3} \sqrt{2+x^{2}}} \\
& +x^{3} \sqrt{2}-2 x^{2}+x \sqrt{2} \\
& +x^{4}-x \sqrt{2}+1 \\
& \hline+1 .
\end{aligned}
$$

Article 203.

DIVISION OF RADYCALS OF THE SFCOND DEGREE.
(2) $\frac{\sqrt{ } 54}{\sqrt{6}}=\sqrt{ } \frac{54}{6}=\sqrt{ } 9=3$.
(3) $\frac{6 \sqrt{54}}{3 \sqrt{27}}=\frac{6}{3} \sqrt{\frac{54}{27}}=2 \sqrt{2}$.
(4) $\frac{6 \sqrt{28}}{2 \sqrt{7}}=\frac{6}{2} \sqrt{ } \frac{28}{7}=3 \sqrt{4}=6$.
(5) $\frac{\sqrt{ } 160}{\sqrt{8}}=\sqrt{ } \frac{160}{8}=\sqrt{ } 20=2 \sqrt{ } 5$.
(6) $\frac{15 \sqrt{ } 378}{5 \sqrt{6}}-\frac{15}{5} \sqrt{ } \frac{378}{6}=3 \sqrt{63}=3 \sqrt{9} \times 7=9 \sqrt{ } 7$.
(7) $\frac{\sqrt{ } a^{3}}{\sqrt{ } a}=\sqrt{a^{3}} \frac{\sqrt{a}}{a}=a$.
(8) $\frac{a b \sqrt{ } a^{3} b^{3}}{b \sqrt{ } a b}=\frac{a b}{b} \sqrt{\frac{a^{3} b^{3}}{a b}}=a \sqrt{a^{2} b^{2}=}=a^{2} b$.
(9) $\frac{a}{\sqrt{ } a}=\frac{\sqrt{ } a^{2}}{\sqrt{ } a}=\sqrt{ } \frac{a^{2}}{a}=\sqrt{ } a$.
(10) $\frac{a \sqrt{b}}{c \sqrt{d}}=\frac{a}{c} \sqrt{\frac{b}{d}}=\frac{a}{c} \sqrt{\frac{b d}{d^{2}}}=\frac{a}{c} \sqrt{\frac{1}{d^{2}} \times b d}=\frac{a}{c d} \sqrt{ } b d$.

(12) $\sqrt{\frac{1}{2}} \div \sqrt{\frac{1}{3}}=\sqrt{\frac{1}{2} \times \frac{3}{1}}=\sqrt{\frac{3}{2}}=\sqrt{\frac{6}{4}}=\sqrt{\frac{1}{4} \times 6}=\frac{1}{2} \sqrt{6}$.
(13) $\quad \sqrt{\frac{3}{4}} \div \sqrt{3}=\sqrt{\frac{3}{4} \times \frac{3}{1}}=\sqrt{\frac{9}{4}}=\frac{3}{9}=1 \frac{1}{9}$.
(14) $\frac{2}{3} \sqrt{ } 18 \div \frac{1}{2} \sqrt{ } 2=\frac{2}{3} \times \frac{2}{1} \sqrt{\frac{18}{2}}=\frac{4}{3} \sqrt{ } 9=4$.
(15) $\frac{3}{5} \sqrt{\frac{1}{3}} \div \frac{1}{2} \sqrt{\frac{3}{5}}=\frac{3}{5} \times \frac{2}{1} \sqrt{\frac{1}{3} \times \frac{5}{3}}=\frac{6}{5} \sqrt{\frac{1}{9} \times 5}=\frac{6}{15} \sqrt{5}=\frac{2}{5} \sqrt{5}$.
(16) $\frac{1}{2} \sqrt{\frac{1}{2}}=\frac{1}{2} \sqrt{\frac{1}{4} \times 2}=\frac{1}{2} \times \frac{1}{2} \sqrt{2}=\frac{1}{4} \sqrt{2}$;

$$
\begin{aligned}
& \sqrt{ } 2+3 \sqrt{\frac{1}{2}}=\sqrt{ } 2+3 \sqrt{\frac{1}{4} \times 2}=\sqrt{ } 2+\frac{3}{2} \sqrt{2}=\frac{5}{2} \sqrt{2} \\
& \frac{1}{4} \sqrt{2} \div \frac{5}{2} \sqrt{2}=\frac{1}{4} \times \frac{2}{5} \sqrt{2}=\frac{2}{20}=\frac{1}{10} .
\end{aligned}
$$

Article 204.

1) $\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}=\frac{1}{2} \sqrt{2}$.
(2) $\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}} \times \sqrt{\sqrt{3}}=\frac{\sqrt{6}}{3}=\frac{1}{3} \sqrt{6}$.
(3) $\frac{1}{2+\sqrt{3}}=\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{ } 3$.
(4) $\frac{3}{6-\sqrt{3}}=\frac{3}{6-\sqrt{ } 3} \times \frac{6+\sqrt{ } 3}{6+\sqrt{3}}=\frac{3(6+\sqrt{ } 3)}{36-3}=\frac{1}{11}(6+\sqrt{ } 3)$.
(5) $\frac{5}{\sqrt{7}+\sqrt{6}}=\frac{5}{\sqrt{7}+\sqrt{6}} \times \frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}-\sqrt{6}}=\frac{5(\sqrt{7}-\sqrt{6})}{7-6}$. $=5(\sqrt{7}-\sqrt{6})$.
(6) $\frac{8}{\sqrt{5}-\sqrt{3}}=\frac{8}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{8(\sqrt{ } 5+\sqrt{3})}{5}-3$. $=4(\sqrt{5}+\sqrt{3})$.
(7) $\frac{3}{\sqrt{5}}=\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}={ }_{5}^{3} \sqrt{5}={ }_{5}^{3}(2.2360679+)=1.3416407+$.
2) $\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3}{\sqrt{5}-\sqrt{2}^{2}} \times \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}=-\frac{3(\sqrt{5}+\sqrt{2})}{3}$.
$=\sqrt{ } 5+\sqrt{ } 2=2.2360679+1.4142135+=3.650281+$.
(9) $\frac{\sqrt{2} 2}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{10}+\sqrt{ } 6}{5-3}$.

$$
={ }_{2}^{1}(\sqrt{ } 10+\sqrt{ } 6)=\frac{1}{2}(3.162277+2.449489+)=2.805833+
$$

Article 205.

BIMPLE EQUATIONS CONTAINING RADICALS OF THESEUOND DEGREE.
(1)

$$
\sqrt{ }(x+3)+3=7
$$

Transposing, $\sqrt{ }(x+3)=4$;
squaring,
$x+3=16$;
from which
$x=13$.

$$
\begin{equation*}
x+\sqrt{ }\left(x^{2}+11\right)=11 . \tag{2}
\end{equation*}
$$

Transposing, $\sqrt{ }\left(x^{2}+11\right)=11-x$;
squaring,

$$
x^{2}+11=121-22 x+x^{2} ;
$$

from which $x=5$.

$$
\begin{equation*}
\sqrt{ }(6+\sqrt{x-1})=3 . \tag{3}
\end{equation*}
$$

Squaring, $6+\sqrt{x-1}=9$;
transposing, $\sqrt{x-1}=3$;
squaring, $\quad x-1=9$;
from which $\quad x=10$.
(4)

$$
\sqrt{x(\alpha+x)}=a-x .
$$

Squaring, $x(a+x)=a^{2}-2 a x+x^{2}$.
reducing $\quad 3 a x=a^{2}$;
from which $\quad x=\frac{a}{3}$.
(5)
$\sqrt{x-2}=\sqrt{ }(x-8)$.
Squaring, $x-4 \sqrt{x}+4=x-8$;
reducing, $\quad-4 \sqrt{ } x=-12$;
dividing, $\quad \sqrt{ } x=3$;
squaring, $\quad x=9$.
(6)

$$
x+\sqrt{x^{2}-7}=7 .
$$

Transposing, $\sqrt{x^{2}-7}=7-x$;
squaring, $\quad x^{2}-7=49-14 x+x^{2}$;
from which $\quad x=4$.
17)
$2+\sqrt{3 x}=\sqrt{5 x+4}$.
Squaring, $4+4 \sqrt{ } 3 x+3 x=5 x+4$;
reducing, $\quad 4 \sqrt{ } 3 x=2 \mathrm{r}$;
dividing, $2 \sqrt{3 x}=x:$
squaring, $4 \times 3 x=x^{2}$;
from which

$$
x=12 .
$$

SIMILE ERUATITNS CONTAININGRADICA: B. dib

$$
\begin{equation*}
\sqrt{x+7}=6-\sqrt{x-5} \tag{8}
\end{equation*}
$$

Squaring,

$$
x+7=36-12 \sqrt{x-5}+x-5
$$

transposing and reducing, $\sqrt{x-5}=2$;
squaring,
from which $x=9$.

$$
\begin{equation*}
\sqrt{x-a}=\sqrt{x-\frac{1}{2}} \sqrt{ } a \tag{9}
\end{equation*}
$$

Squaring,

$$
x-a=x-\sqrt{a x}+\frac{1}{4} a ;
$$

transposing, and reducing, $\sqrt{a x}=\frac{5 a}{4}$;
squaring,

$$
a x=\frac{25 a^{2}}{16}
$$

whence

$$
x=\frac{25 a}{16}
$$

$\sqrt{x+2: 25}-\sqrt{x-424}-11=0$.
Transposing, $\sqrt{x+225}=11+\sqrt{x-424}$;
squawirg, $\quad x+225=121+22 \sqrt{x-424}+2-424$;
reducing, $528=22 \sqrt{x-424}$;
dividing, $24=\sqrt{x-42} 4 ;$
squaring, $576=x-424$;
from which $x=1000$.

$$
\begin{equation*}
x+\sqrt{2 a x+x^{2}}=a \tag{11}
\end{equation*}
$$

Transposing, $\sqrt{2 a x+x^{2}}=a-x$;
squaring,
reducing,

$$
2 a x+x^{2}=a^{2}-2 a x+x^{2} ;
$$

$$
4 a x=a^{2} ;
$$

whence

$$
x=\frac{1}{4} a
$$

$$
\sqrt{x+} \bar{a}-\sqrt{x-a}=\sqrt{ } a
$$

Tririsposing, $\sqrt{x+a}=\sqrt{ } a+\sqrt{x-a}$;
squaring,

$$
x+a=a+2 \sqrt{a x-a^{2}}+(x-a) ;
$$

reducing, $\quad a=2 \sqrt{a x-a^{2}}$;
squaring, $\quad a^{2}=4\left(a x-a^{2}\right)$;
whence

$$
x=\frac{5 a}{4}
$$

(13)

$\sqrt{x+12}$	$=2+\sqrt{x}$.
Sowaring, $x+12$	$=4+4 \sqrt{x-x ;}$
1 during,$\quad 2$	$=\sqrt{x}$,
squaring, $\quad x$	$=4$.

$$
\begin{equation*}
\sqrt{8+x}=2 \sqrt{1+x-} \sqrt{x} \tag{14}
\end{equation*}
$$

Squaring, $8+x=4(1+x)-4 \sqrt{x+x^{2}+x}$,
transposing, and reducing $4 \sqrt{x+x^{2}}=4(x-1)$;
dividing, $\sqrt{x+x^{2}}=x-1$;
squaring, $\quad x+x^{2}=x^{2}-2 x+1$;
reducing, $\quad 3 x=1$;
whence $\quad x=\frac{1}{3}$.

$$
\begin{equation*}
\sqrt{5 x}+\frac{12}{\sqrt{5 x+}}=\sqrt{5 x+6} \tag{15}
\end{equation*}
$$

Multiply by $\sqrt{5 x+6} ; \sqrt{25 x^{2}+30 x}+12=5 x+6$;
transposing,

$$
\sqrt{25 x^{2}+30 x}=5 x-6
$$

squaring,
reducing,
$25 x^{2}+30 x=25 x^{2}-60 x-+36$;
$90 x=36$,
whence,
$x=\frac{2}{5}$.

$$
\begin{equation*}
\sqrt{ } x-4=\frac{237-10 x}{4+\sqrt{x}} \tag{16}
\end{equation*}
$$

Multiplying by $4+\sqrt{ } x, x-16=237-10 x$;
transposing,
dividing,

$$
\begin{aligned}
11 x & =253 ; \\
x & =23 .
\end{aligned}
$$

$$
\sqrt{x^{2}+\sqrt{4 x^{2}+x+\sqrt{9 x^{2}+12 x}}}=1+x .
$$

Squaring, $x^{2}+\sqrt{4 x^{2}+x+\sqrt{9 x^{2}+12 x}}=1+2 x+x^{2}$; omitting x^{2} on each side, and squaring again, we have

$$
4 x^{2}+x+\sqrt{9 x^{2}+12 x}=1+4 x+4 x^{2} ;
$$

reducing,
squaring,
reducing,
and

$$
\begin{aligned}
\sqrt{9 x^{2}+12 x} & =1+3 x ; \\
9 x^{2}+12 x & =1+6 x+9 x^{2} ; \\
6 x & =1 \\
x & =\frac{1}{6} .
\end{aligned}
$$

$$
\begin{equation*}
\sqrt{a+\sqrt{a x}}=\sqrt{ } a-\sqrt{a-\sqrt{a x .}} \tag{18}
\end{equation*}
$$

Squaring, $\left.a+\sqrt{a x}=a-2 \sqrt{a^{2}-a} \sqrt{a x}+i a-\sqrt{a x}\right)$;
transposing and reducing, $2 \sqrt{a^{2}-a \sqrt{a x}}-a-2 \sqrt{a x}$;
squaring, $4\left(a^{2}-a \sqrt{a x}\right)=a^{2}-4 a \sqrt{a x}+4 a i i^{\prime}$
reducing,
$3 a^{2}=4 a x$,
whence

$$
x=\frac{3 a}{4} .
$$

$$
\begin{equation*}
b(\sqrt{ } x+\sqrt{ } b)=a(\sqrt{x}-\sqrt{ } b) \tag{19}
\end{equation*}
$$

Transposing, $a \sqrt{ } x-b \sqrt{ } x=a \sqrt{ } b+b \sqrt{b}$; factoring, $\quad(a-b) \sqrt{ } x=(a+b) \sqrt{ } b$;
squaring, $\quad(a-b)^{2} x=(a+b)^{2} b$;
whence

$$
\begin{equation*}
x=\frac{(a+b)^{2} b}{(a-b)^{2}} . \tag{20}
\end{equation*}
$$

Factoring, $\begin{aligned} & \sqrt{ } x+\sqrt{a x}=a-1 . \\ & \sqrt{x(1+\sqrt{ } a)}=a-1=(\sqrt{ } a+1)(\sqrt{ } a-1),\end{aligned}$
dividing both sides by $1+\sqrt{ } a$, and observing that $1+\sqrt{ } a$ is the same as $\sqrt{ } a+1$,

$$
\sqrt{x}=(\sqrt{ } a-1) ;
$$

squaring,

$$
x=(\sqrt{ } a-1)^{2} .
$$

Article 211.

UUESTIONS PRODUCING INCOMPLETEEQUAE TIONS OF THE SECOND DEGREF
(2) Let $x=$ the number.

Then $\frac{x}{3} \times \frac{x}{4}=108$;
whence $\frac{x^{2}}{12}=108$;

$$
x^{2}=1296 ;
$$

$$
x=36 .
$$

(3) Let $x=$ the number.

Then $x^{2}-16=\frac{x^{2}}{2}+16$;
whence $\frac{x^{2}}{2}=32$, and $x=8$.
(4) Let $x=$ the number.

Ther

$$
\begin{aligned}
& x^{2}-54=\binom{x}{2}^{2}+54 ; \\
& x^{2}-54=\frac{x^{2}}{4}+54
\end{aligned}
$$

transposing, $\frac{3 x^{2}}{4}=108$; from which $x=12$.
(5) Let $x=$ the number.

Then $\frac{x}{9}=\frac{16}{x}$;
multiply by $9 x$ to remove the denominators,

$$
\begin{aligned}
x^{2} & =9 \times 16 ; \\
x & =3 \times 4=12 .
\end{aligned}
$$

(7) Let $3 x$ and $4 x$ represent the numbers.

Then $16 x^{2}-9 x^{2}=63$;
from which $7 x^{2}=63$, and $x=3$.
Hence, $\quad 3 x=9$, and $4 x=12$.
(8) Let $3 x$ and $4 x$ represent the numbers.

Then $9 x^{2}+16 x^{2}=100$;
from which $x^{2}=4$, and $x=2$.
Hence, $\quad 3 x=6$, and $4 x==8$.
(9) Let $\quad x=$ the number.

Then $(x+3)(x-3)=40$; $x^{2}-9=40$;
from which $\quad x^{2}=49$, and $x=7$.
(10) Let $\quad 5 x=$ the breadth and $9 x=$ the length

Then $5 x \times 9 x=45 x^{2}=$ the number of square fect ;
therefore, $\quad 45 x^{2}=1620$;
from which $\quad x^{2}=36$, and $x=6$.
Hence, $\quad 5 x=30$, and $9 x=54$.
(11) Let $10 x=$ the number of acres in the farm ; then $x=$ the cost per acre in dollars.
Therefore, $10 x \times x=10 x^{2}=1000$, the \cos of the farm ; from which $\quad x^{2}=100$, and $x=10$, the cost per acre. Hence, $\quad 10 x=100$, the number of acres.
(12) By placing $10 x=$ their sum, we have the greater $=7 x$, since their sum is to the greater as 10 to 7. And if

FqUATIUNSOFTHESSCONDDIGREE. 53
$10 x=$ their sum, and $7 x=$ the greater, the less $=10 x$ -
$7 x=3 x$.
Therefore, $10 x \times 3 x=30 x^{2}=270$;
from which $\quad x^{4}=9$, and $x=3$.
Hence, $\quad 7 x=21$, and $3 x=9$.
(13) Let $2 x=$ their difference, then $9 x$ will be the greater, and $9 x-2 x=7 x$, will be the less.
Therefore, $(9 x)^{2}-(7 x)^{2}=128$;

$$
81 x^{2}-49 x^{2}=128 ;
$$

from which
Hence,

$$
x^{2}=4, \text { and } x=2 .
$$

$9 x=18$, and $7 x=14$.-
(14) Let $x=$ the cost of an orange, then $3 x=$ the number of oranges.
Then $3 x \times x=3 x^{2}=48$;
from which $x=4$, the cost of an orange ;
and $\quad 3 x=12$, the number of orunges.
(15) Let $4 x=$ the cost of 1 yard in cents, then $9 x=$ the num ber of yards.
Then $9 x \times 4 x=36 x^{2}=324$;
from which $x^{2}=9$, and $x=3$.
Hence, $\quad 4 x=12$, the cost per yard; and $\quad 9 x=27$, the number of yards.
(16) Let $\frac{1}{2} x$ and $\frac{2}{3} x$ represent the numbers.

Then $\frac{1}{4} x^{2}+\frac{5}{5} x^{2}=225$;
multiplying by 4×9, to remove fractions, we have

$$
\begin{aligned}
9 x^{2}+16 x^{2} & =225 \times 4 \times 9 ; \\
25 x^{2} & =225 \times 4 \times 9 ; \\
x^{2} & =9 \times 4 \times 9 ;
\end{aligned}
$$

dividing
extracting the $3 q$. root, $x=3 \times 2 \times 3=18$.
Hence, $\frac{1}{2} x=9$, and $\frac{2}{3} x=12$.
We may avoid fractions by representing the numbers by $3 x$ and $3 x$, as recommended in the book.
(17) By reducing $\frac{1}{2}$, $\frac{2}{3}$, and $\frac{3}{4}$, to a common denominutor, $x 9$ find they are to each other as 6,8 , and 9 ; thercfore, let the three numbers be represented by $6 x, 3 x$, and $9 x$.
Then $36 x^{2}-464 x^{2}+81 x^{2}=724$;
adding, $\quad 181 x^{2}=784$;
from which $\quad r^{2}=4$, and $x=2$.
Hence, $6 x=12, \quad 8 x=16$, and $9 x=18$.
(18) Let $4 x=$ the price of a y ard, then $5 x=$ the number of yards.
Then 20x $2=$ whole cost ;
and $\frac{20 x^{2}+45}{5 x}=$ cost of a yard if he had received 45 cents more for the same piece.
Therefore, $\frac{20 x^{2}+45}{5 x}: 5 x:: 5: 4$
whence,

$$
\frac{80 x^{2}+180}{5 x}=25 x ;
$$

multiplying by $5 x, 80 x^{2}+180=125 x^{2}$;
from which $x^{2}=4, \quad$ and $x=2$.
Hence, $\quad 4 x=8, \quad$ and $5 x=10$.

Article 212.

CCMFLETE EQUATIONSOFTHE SEGONDDEGREE.

$$
\begin{align*}
& 2 a x-x^{2}=-2 a b-b^{2} . \tag{50}\\
& x^{2}-2 a x=2 a b+b^{2}, \text { by changing the signs }, \\
& x^{2}-2 a x+a^{2}=a^{2}+2 a b+b^{2}, \text { by completing }
\end{align*}
$$

the square ;
$x-a= \pm(a+-b)$, by extracting the sq. root ;
transposing, $x=a \pm(a+b)=2 a+b$, or $-b$.
(51) $x^{2}-2 a x=b^{2}-a^{2}$.
$x^{2}-2 a x+a^{2}=b^{2}$, by completing the square ;
$x-a= \pm h$, by extracting the square root;
$x=a \pm b=a+b$, or $a-b$.
(52) $x^{2}+31 x-4 b^{2}=0$.
$x^{2}+3 b x=4 b^{2}$, by transposing ;
$x^{2}+3 b x+\frac{9 b^{2}}{4}=4 b^{2}+\frac{9 h^{2}}{4}=\frac{25 b^{2}}{4}$, by completing the sq.:
$x+\frac{3 b}{2}= \pm \frac{5 b}{2}$, by extracting the square root;
$x=-\frac{3 b}{2}- \pm \frac{5 b}{2}=\cdot \vdash b$, or $-4 b$.
(53)
$x^{2}-a x-b x=-a b$.
$x^{2}-(a+b) x=-a b$, by filctoring ;
$x^{2}-(a+b) x+\frac{(a+b)^{2}}{4}=\frac{(a+b)^{2}}{4}-a b=\frac{a^{2}-2 a b+1^{2}}{4} ;$

$$
\begin{aligned}
& x-\frac{a+b}{2}= \pm \frac{a-b}{2} \\
& x=\frac{a+b}{2} \pm \frac{a-b}{2}=+a, \text { or }+b .
\end{aligned}
$$

(a4) $\frac{x}{x+a}=\frac{b}{x-b}$.
$x^{2}-b x=b x+a b$, by clearing of fractions;
$x^{2}-2 l x=a b$;
$x^{2}-2 b x+b^{2}=a b+b^{2} ;$
$x-b= \pm \sqrt{a b+b^{2}}$;
$x=b \pm \sqrt{a b+b^{2}}$.
(55) $2 b x^{2}+(a-2 b) x=a$.

$$
\begin{aligned}
& x^{2}+\frac{a-2 b}{2 b} x=\frac{a}{2 b} ; \\
& x^{2}+\frac{a-2 b}{2 b} x+\frac{(a-2 b)^{2}}{16 b^{2}}=\frac{(a-2 b)^{2}}{16 b^{2}}+\frac{a}{2 b}=\frac{a^{2}+4 a^{\prime}-4 t^{2}}{16 b^{2}} ; \\
& x+\frac{a-2 b}{4 b}= \pm \frac{a+2 b}{4 b} ; \\
& x=-\frac{a-2 b}{4 b} \pm \frac{a+2 b}{4 b}=1, \text { or }-\frac{a}{2 b} .
\end{aligned}
$$

(56) $\frac{x^{2}}{a^{2}}-\frac{x}{b}=\frac{2 a^{2}}{b^{2}}$.
$x^{2}-\frac{a^{2}}{b} x=\frac{2 a^{4}}{b^{2}}-$, by multiplying by a^{2};
$x^{2}-\frac{a^{2}}{b} x+\frac{a^{1}}{4 b^{2}}=\frac{a^{4}}{4 b^{2}}+\frac{8 a^{4}}{4 b^{2}}=\frac{9 a^{4}}{4 b^{2}}=\left(\frac{3 a^{2}}{2 b}\right)^{2} ;$
$x-\frac{a^{2}}{2 b}= \pm \frac{3 a^{2}}{2 b}$; .
$x=\frac{a^{2}}{2 b} \pm \frac{3 a^{2}}{2 b}=\frac{2 a^{2}}{b}$, or $-\frac{a^{2}}{b}$.
(5) $x^{2}-(a-1) x-a=0$.
$x^{2}-(a-1) x=a ;$
$x^{2}-(a-1) x+\frac{(a-1)^{2}}{4}=\frac{(a-1)^{2}}{4}+\frac{4 a}{4}=\frac{(a+1)^{2}}{4} ;$
$x-\frac{a-1}{2}= \pm \frac{a+1}{2}$;
$x=\frac{a-1}{2} \pm \frac{a+1}{2}=a$, or -1 .
(58)

$$
\begin{aligned}
& x^{2}-(a+b-c) x=(a+b) c . \\
& x^{2}-(a+b-c) x+\frac{(a+b-c)^{2}}{4}=\frac{(a+b-c)^{2}}{4}-+\frac{4(a+b) c}{4} \\
& =\frac{a^{2}+2 a b+b^{2}-2 a c-2 b c+c^{2}+4 a c+4 b c}{4} \\
& =\frac{a^{2}+2 a b+b^{2}+2 a c+2 b c+c^{2}}{4}=\frac{(a+b+c)^{2}}{4}
\end{aligned}
$$

by extracting the square root of both sides, we find
$x-\frac{a+b-c}{2}= \pm \frac{a+b+c}{2} ;$
$x=\frac{a+-b-c}{2} \pm \frac{a+b+c}{2}=a+b$, or $-c$.

Article 214.

FROBLEMS PRODUCING COMPLETE EUUATTONS OF THE SECOND DEGREE.
(6) Let $x=$ the number.

Then $x^{2}-6 x=7$.
from which $x=+7$, or -1 .
The positive value satisfies the given question in an arıthmetical sense, and the negative value satisfies the following question in an arithmetical sense.

Find a number, such that if its square be increased by 6 times the number itself, the sum shall be 7.
(7) Let $x=$ the number.

Then $x^{2}+8 x=9$.
from which $x=+1$, or -9 .
The positive value satisfies the question in an arithmetical sense, and the negative value satisfies a question expressed in the same words, except that increased should be diminished, and sum should be difference.
(8) Let $x=$ the number.

Then $2 x^{2}+3 x=65$;
from which $x=+5$, or $-\frac{13}{2}$.
(9) Let $\quad x=$ the number Then $\frac{2}{3}\left(x^{2}-1\right)=\frac{5 x}{2}$;
from which, $x=+4$, or $-\frac{1}{4}$.
The negative value is the answer, in an aritl metical sense, to the following question.

Find a number such, that if 1 be diminished by its square, and $\frac{3}{3}$ of the remainder be taken, the result slall be equal to 5 times the number divided by 2.
(10) Let $x=$ the number.

Then $\frac{44}{x-2}=\frac{1}{4} x-4$;

$$
44=\frac{1}{4} x^{2}-4 \frac{1}{2} x+8, \text { by multiplying by } x-2
$$

$x^{2}-18 x=144$, by clearing, transposing and changing signs;
whence $x=+24$, or -6 .
(11) Let $x=$ the greater number, then $x-8=$ the less.

Therefore $x^{2}-8 x=240$;
from which $\quad x=+20$, or -12 .
Hence, $\quad x-8=+12$, or -20 .
(12) Let $x=$ the number of sheep.

Then $\quad \frac{80}{x}=$ cost of one;
also, $\frac{80}{x+4}=$ cost of one, if he had bought 4 more for the same money.

$$
\begin{aligned}
\text { Therefore } \frac{80}{x+4}+1 & =\frac{80}{x} \\
80 x+x^{2}+4 x & =80 x+320, \text { by clearing of fractions }, \\
x^{2}+4 x & =320, \text { from which } x=+16, \text { or }-20
\end{aligned}
$$

The negative value is the answer, in an arithmetical sense to the following question.

A person bought a number of sheep for 80 dollars; if he had pought 4 less for the same money, be would have paid 1 dollar grore for each; how many did he buy ?
(13) Let $x=$ the greater number, then $x-10=$ the less.

Then $\frac{600}{x-10}-\frac{600}{x}=10$.
$600 x-600 x+6000=10 x^{2}-100 x$; by clearing of frct'ns, whence $\quad x^{2}-10 x=600$;
from which $\quad x=-+30$, or-20,
and $\quad x-10=-20$, or -30 .
(14) Let $x=$ the rate of travel.

Then $\frac{45}{x}=$ number of hours traveling at x miles per hour;
and $\frac{45}{x+\frac{1}{2}}=$ number of hours traveling at $\left(x+\frac{1}{2}\right)$ miles per hour.
Therefore, $\frac{45}{x+1}+1 \frac{1}{4}=\frac{45}{x}$;
from which we find $x=+4$, or $-4 \frac{1}{2}$.
The negative value is the answer, in an arithmetical sense, to a question expressed in the same words, except that increases slould be diminishes, and sooner should be later.
(15) Let $x=$ one of the numbers, then $14-x=$ the other.

Then $x^{2}+(14-x)^{2}=100 ;$
$x^{2}+196-28 x+x^{2}=100 ;$
reducing, $x^{2}-14 x=-48$;
from which $\quad x=7 \pm 1=+8$, or +6 ;
and $\quad 14-x=+6$, or +8 .
(16) Let $x=$ the number of rows, then $x+5=$ number of trees in a row,
and $\quad x(x+5)=$ the whole number of trees.
Therefore $x^{3}+5 x=204$;
from which $\quad x=+12$, or -17 ;
and

$$
x+5=+17, \text { or }-12 .
$$

The negative value is the answer to a similar question, the word more being changed to less.
(17) Let $x=$ the age of the boy, then $x-4=$ his sister's age. Then $2(x-4)^{2}+7=x^{2}$;
from which $\quad x=+13$, or +3 , and $\quad x-4=+9$, or -1 .
(18) Let $x=\mathrm{B}$'s rate of travel; then $x+3=$ A's rate,

Then $\frac{150}{x}-\frac{150}{x+3}=8 \frac{1}{5}$;
$150 x+450-150 x=813 x^{2}+25 x$; hy clearing of fractions; reducing $\quad x^{2}+3 x=54$;
from which $\quad x=+6$, or -9 , end $x+3=+9$, or -6 .
(19) Let $x=$ the num jer in the company at first, then $\quad \frac{175}{x}=$ what each ought to have paid,
and $\frac{175}{x-2}=$ what those paid who remained.
Therefore $\frac{175}{x-2}-\frac{175}{x}=\mathbf{1 0}$.
$175 x-175 x+350=10 x^{2}-20 x$, by clearing of frct'ns: $x^{2}-2 x=35$, by reducing ;
from which

$$
x=+7, \text { or }-5
$$

(20) Let $x=$ the larger number ; then $\frac{100}{x}=$ the smaller.

Therefore, $(x-1)\left(\frac{100}{x}+1\right)=120$;

$$
\frac{(x-1)(100+x)}{x}=120 ;
$$

$$
100 x+x^{2}-100-x=120 x ;
$$

$$
x^{2}-21 x=100 ;
$$

from which
and

$$
x=+25 \text {, or }-4 \text {; }
$$

$$
\frac{100}{x}=+4, \text { or }-25 .
$$

(21) Let $x^{2}=$ the father's age; then $\frac{x^{2}-4}{3}=$ the son's age.

Then $\frac{1}{2}\left(\frac{x^{2}-4}{3}-1\right)=x$.

$$
\begin{gathered}
\frac{x^{2}-4}{3}-1=2 x, \text { by multiplying by } 2, \\
x^{2}-4-3=6 x, \text { by multiplying by } 3, \\
x^{2}-6 x=7, \text { by transposing; }
\end{gathered}
$$

from which $\quad x=+7$, or -1
Hence,

$$
x^{2}=49, \text { and } \frac{x^{2}-4}{3}=15 .
$$

(22) Let $x^{2}=$ her age.

Then $\frac{3 x^{2}}{8}+x=10$;
from which $x=+4$, or $-\frac{20}{3}$.
Hence, $x^{2}=16$, or $44 \frac{4}{6}$, the former of which satisfies the conditions of the question in its arithmetical sense.
(23) Let $x^{2}=$ the number.

Then $x^{2}-\frac{3 x}{5}=22$;
from which $x=+5$, or $-\frac{22}{5}$;
Hence, $\quad x^{2}=25$, or $19{ }_{2}{ }^{9}$, the former of whicl satistipe the conditions of the question in its arithmetical sensa.
(24) Let

Then
and
Therefore $\quad \frac{600}{x}+1=\frac{540}{x-15}$;
from which
Hence,

$$
\frac{600}{x}=+8, \text { or }-5 .
$$

The negative values are the answer, in an arithmetical sense to the following question.

A merchant bought a piece of muslin for 6 dollars: after adding to it 15 yards, he sold the whole for 5 dollars and 40 cents; at which rate he received 1 cent a yard less than the piece cost him; how many yards did he buy, and at what price?

Let $\quad x=$ cost, then $\frac{x}{100}=$ per cent of loss,
and $x \times \frac{x}{100}=\frac{x^{2}}{100}=$ loss.
Therefore $x-\frac{x^{2}}{100}=24$,
whence
$x=+60$, or +40 .

Article 219.

EQUATIONS OF THE SECOND DEGREE, CON. TAINING TWO UNKNOWN QUANTITIEG.
(6) $x^{2}+y^{2}=34, \quad$ (1);
$x^{2}-y^{2}=16$, (2).
By adding these equations together, and dividing by 2 , wp find $x^{2}=25$; from which $x=+5$, or -5 .

The value of y may be found either by substituting 25 instead ${ }^{*} x^{2}$, or by subtracting the second equation from the first.
(7) $x+y=16$,
(1) $x y=63$,
(2).

The values of x and y are readily obtained by finding the value of either in terms of the other from equation (2), and substituting it in equation (1) ; or thus:

$$
\begin{aligned}
x^{2}+2 x y-1 y^{2} & =256, \text { by squaring } \quad(1) ; \\
4 x y & =252 \text { by multiplying (2) by } 4 ; \\
\hline x^{2}-2 x y+y^{2} & =4, \text { by subtracting; } \\
x-y & =2, \text { by extracting the square root; } \\
x+y & =16 .
\end{aligned}
$$

From these equations, by adding and subtracting, the values of x and y are readily found.

$$
\begin{align*}
x-y & =5, \quad(1) ; \tag{8}\\
x y & =36, \quad(2) .
\end{align*}
$$

From Eq. (1) $y=x-5$; this being substituted instead of y in Eq. (2) gives $x^{2}-5 x=36$, from which x is readily found, and then y.

Or, by squaring Eq. (1), then adding it to 4 times Eq. (2), and cxtracting the square root, we find $x+y=11$; from which, and Eq. (1), by adding and subtracting, the values of x and y are readily found.

$$
\begin{align*}
x+y=9, & \text { (1) ; } \tag{9}\\
x^{2}+y^{2}=53, & \text { (2). }
\end{align*}
$$

From Eq. (1), $y=9-x$; this being substituted instead of y in Eq. (2) gives, after reducing, $x^{2}-9 x=-14$; front which we find $x=7$, or 2 ; consequently $y=2$, or 7 .

$$
\begin{align*}
x-y & =5, \tag{10}\\
x^{2}+y^{2} & =73,
\end{align*}
$$

From Eq. (1) $y=x-5$; this being substituted instead of y in Eq. (2), gives, after redueing, $x^{2}-5 x=24$; from which x is found $=8$, or -3 ; hence $y=3$, or -8 .

$$
\begin{gather*}
x^{3}+y^{3}=152, \tag{11}\\
x+y=8,
\end{gather*}
$$

Dividing Eq. (1) by Eq. (2), we find $x^{2}-x y+y^{2}=19$, (3),
From Eq. (2) $y=8-x$; substituting this value of y in Eq. (3) and reducing, we have $x^{2}-8 x=-15$; from whieln we find $x=5$, ${ }_{*}$) 3 ; hence $y=3$, or 5 .
(12) $x^{3}-y^{3}=208$,
(1) ;
$x-y=4$,
(2).

Dividing Eq. (1) by Eq. (2), we find $x^{2}+x y-+y^{2}=52$, (3).
From Eq. (2), $y=x-4$; substituting this value of y in Eq. (3) and reducing, we find $x^{2}-4 x=12$; from which $x=6$, or -2 : hence $\psi=2$, or -6 .

$$
\begin{align*}
x^{3}+y^{3} & =19(x+y) \tag{13}\\
x-y & =3 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { By dividing both sides of Eq. (1) by } x+y \text {, } \\
& x^{2}-x y+y^{2}=19, \tag{3}
\end{align*}
$$

From Eq. (2) $y=x-3$; substituting this value of y in Eq. (3) and reducing, we find $x^{2}-3 x=10$; from which $x=5$, or -2; hence $y=2$, or -5 .

$$
\begin{align*}
& x+y=11 \\
& x^{2}-y^{2}=11 \tag{14}
\end{align*}
$$

From Eq. (1) $y=11-x$; this being substituted in Eq. (2) instead of y, and the equation reduced, gives $22 x=132$, from which $x=6$; hence $y=5$.

$$
\begin{align*}
(x-3)(y+2) & =12, \quad(1) ; \tag{15}\\
x y \quad & =12, \quad(2) .
\end{align*}
$$

Performing the operations indicated in Eq. (1) and then subrracting Eq. (2) from it, we find $2 x-3 y=6$, (3). From Eq. (3) we find $x=\frac{6+3 y}{2} \underline{y}$, and this being substituted in Eq. (2), gives, after reducing, $y^{2}+2 y=8$; from which $y=2$, or -4 ; hence $x=6$, or -3

$$
\begin{align*}
y-x & =2 \tag{16}\\
3 x y & =10 x+y,
\end{align*}
$$

From Eq. (I) $y=x+2$; this value of y being substituted in Eqq. (2), gives, after reducing, $3 x^{2}-5 x=2$; from which $x=2$, or $-\frac{1}{3}$; hence, $y=4$, or $1 \frac{2}{3}$.

$$
\text { (17) } \begin{align*}
3 x^{2}+2 x y & =24, \\
5 x-3 y & =1,
\end{align*}
$$

From Eq. (2) $y=\frac{5 x-1}{3}$; this heing substituted in Eq. (1), gives, after reducing, $19 x^{2}-2 x=72$; from which $x=2$, or $-\frac{36}{19}$; hence, $y=3$, or $-\frac{199}{57}$.
(18) $\frac{1}{x}+\frac{1}{y}=\frac{5}{6}$,

$$
\begin{equation*}
\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{13}{36} \tag{2}
\end{equation*}
$$

$$
\begin{array}{r}
\text { Let } \frac{1}{x}=v, \text { and } \frac{1}{y}=x ; \text { then } v+z=\frac{5}{6}, \\
\text { and } v^{2}+z^{2}=\frac{13}{36},
\end{array}
$$

From Eq. (כ) $\approx=\frac{5}{6}-v=\frac{5-6 v}{6}$; substituting this value instead of z in Eq. (4) and reducing, we find
$6 v^{2}-5 v=-1$; from which $v=\frac{1}{2}$, or $\frac{1}{3}$; and substituting in the equation, $z=\frac{5}{6}-v$, we find $z=\frac{1}{3}$, or $\frac{1}{2}$. Hence, $v=\frac{1}{x}=\frac{1}{2}$, or $\frac{1}{3}$; from which $x=2$, or 3 .

$$
z=\frac{1}{y}=\frac{1}{3}, \text { or } \frac{1}{2} ; \text { from which } y=3, \text { or } 2
$$

$$
\begin{align*}
& x-y=2 \tag{19}\\
& x^{2} y^{2}=21-4 x y \tag{1}
\end{align*}
$$

In Eq. (2) let $x y=x$, the equation then becomes $z^{2}=21-4 z ;$ from which z or $x y=3$, or -7 .
We then have $x-y=2$
$x y=3$, to find x and y.
${ }^{r}$ These equations are similar to those in example 8 , and wo readily find $x=3$, or -1 ; hence $y=1$, or -3 .

From the equations $x-y=3$ and $x y=-7$, we may also fina two other values of x and y, but they are imaginary.

Article 219.

PROBLEMS FRODUCING EQUATIONS OF THE SECOND DEGAEE, CONTAINTNG TWO UNKNOWN QUANTITIES.
(1) Let x and y represent the numbers.

Then $x+y=10$, (1);
$x^{2}+y^{2}=52, \quad$ (2).
Solved like question 9, precoding.
(2) Let x and y represent the numbers.

$$
\text { Then } \begin{gather*}
x-y=3, \quad \text { (1); } \\
x^{2}-y^{2}=39,
\end{gather*}
$$

Divide Eq. (2) by Eq. (1) and we get $x-y=13$, (3) ; then from this and Eq. (1), we readily find $x=8$, and $y=3$.
(3) Let x^{2} and y^{2} represent the parts.

$$
\text { Then } \begin{aligned}
x^{2}+y^{2}=25, & \text { (1); } \\
x+y=7, & \text { (2). }
\end{aligned}
$$

The values of x and y may now be found in the same manner os in question 9 , preceding.
(4) Let $x=$ the digit in ten's place, and $y=$ the digit in unit's place.
Then $\quad 10 x+y=$ the number;

$$
\begin{align*}
(10 x+y)(x+y) & =160, \\
\frac{10 x+y}{4 y} & =4, \tag{2}
\end{align*}
$$

Dividing Eq. (1) by Eq. (2) we get

$$
4 y(x+y)=40 \text {; from which } x=\frac{10-y^{2}}{y} .
$$

Substituting this instead of x, in equation 2 , we get

$$
10\left(\frac{10-y^{2}}{y}\right)+y=16 y ;
$$

clearing of fractions, $100-10 y^{2}+y^{2}=16 y^{2}$;
from which $y=2 ; \quad$ hence $x=3$.
(5) Let $x=$ the greater number, and $y=$ their difference, then $x-y=$ the less.
Then $x y=16$,
and $x y-y^{2}=12$,
Subtracting the 2 d equation from the 1 st, we get

$$
\begin{align*}
& y^{2}=4 ; \text { hence } y=2 ; \tag{2}\\
& x=\frac{16}{y}=8 \text {, and } x-y=6 .
\end{align*}
$$

(6) Let x and y represent the numbers.

$$
\begin{align*}
\text { Then } x+y & =10 \\
x y-(x-y) & =22
\end{align*}
$$

Find the value of either x or y from Eq. (1), and substitute it mastead of the same unknown quantity, in Eq. (2).

This may also be easily solved by means of one urknown quancity ; thus, let $x=$ one of the parts, then $10-x=$ the other, and $10-2 x=$ their difference.

$$
\begin{aligned}
& \text { Then } x(10-x)-(10-2 x)=22 \text {; } \\
& \text { from which } \quad x=8 \text {, or } 4 \text {; } \\
& \text { hence } \\
& 10-x=2 \text {, or } 6 \text {. }
\end{aligned}
$$

The numbers 4 and 6 , satisfy the conditions of the question in an arithmetical sense. The numbers 8 and 2 satisfy the following problem. Divide 10 into two such parts, that their product plus their difference, may be 22 .
(7) Let x and y represent the numbers.
Then $x-\vdash y=10$,
(1) ;
$x^{3}+y^{3}=370$,

For the method of solution, see question 11, preceding.
(8) Let x and y represent the numbers.
Then $x-y=2$,
$x^{3}-y^{3}=98$,
(2).

For the method of solution, see question 12, preceding.
(9) Let $x=$ the greater, and $y=$ the less of the two numbers.

Then $6 x+5 . y=50, \quad$ (1) ;

$$
x y=20,
$$

The value of y, from Eq. (2), is $\frac{20}{x}$; this being substi tuted in Eq. (1) and reduced, gives

$$
6 x^{2}-50 x=-100 ; \text { from which }
$$

, $x=5$, or $3 \frac{1}{3}$;
hence, $\quad y=4$, or 6 .
The nirst values of x and y satisfy the question ; the other two satisfy a question precisely similar, except that the words greater and less are transposed.
(10) Let $x=$ the digit in ten's place, and $y=$ the digit in unit's place.
Then $10 x+y=$ the number.
$\frac{10 x+y}{x y}=2$,
$10 x+y+27=10 y+x,(2)$.
From the 2 d equation $y=x+3$; this being substituted in the lst equation, we get, after reducing,
$2 x^{2}--5 x=3$; from which we find $x=3$; hence $y=6$, and the number is 36 .
(11) Let x, y, and z represent the numbers.

Then $\frac{x y}{z}=a$,

$$
\begin{align*}
& \frac{x z}{y}=b, \\
& \frac{y z}{x}=c,
\end{align*}
$$

Multiply the three equations together, and we have $x y z=a b c$, (4).
Divide this successively by each of the equanons (1), (2), and (3), and we obtain

$$
\begin{aligned}
& z^{2}=b c, y^{2}=a c, \text { and } x^{2}=a b . \\
& x= \pm \sqrt{a b}, y= \pm \sqrt{a c}, \text { and } z= \pm \sqrt{b c} .
\end{aligned}
$$

(12) Let x and y represent the numbers.

$$
\begin{align*}
\text { Then } x+y & =9, \\
x^{3}+y^{3} & =21(x+y),
\end{align*}
$$

Divide both sides of Eq. (2) by $x+y$, and we get
$x^{2}-x y+y^{2}=21$,
The value of y, from Eq. (1), is $9-x$; this being substituted in Eq. (3), we have, after reducing,

$$
\begin{aligned}
x^{2}-9 x & =-20, \text { from which } \\
x & =5, \text { or } 4 ; \text { hence } y=4, \text { or } 5 .
\end{aligned}
$$

(13) Let $x+y$, and $x-y$ represent the numbers.

Then the sum of their squares $=2 x^{2}+2 y^{2}$;
the difference of their squares $=4 x y$;
and their product $\quad=x^{2}-y^{2}$.
Therefore $2 x^{2}+2 y^{2}-2\left(x^{2}-y^{2}\right)=4, \quad$ (1), $4 x y-\frac{1}{2}\left(x^{2}-y^{2}\right)=4$, (2).
Reducing Eq. (1) we readily find $y=1$; this value being substituted in Eq. (2): we have, after reduction,

$$
x^{2}-8 x=-7, \text { from which } x=7
$$

Hence, $x+y=8$; \quad and $x-y=6$.
(14) Let $x=$ the circumlerence of the less wheel, and $y=$ that circumference of greater.

$$
\begin{align*}
& \text { Then } \frac{120}{x}=\frac{120}{y}+6 \text {, } \\
& \text { (1) ; } \\
& \frac{120}{x+1}=\frac{120}{y+1}+4, \tag{2}\\
& 120 y=120 x--6 x y \text {, by clearing Eq. (1) of fractions ; }
\end{align*}
$$

$120 y+120=120 x+120+4 x y+4 x+4 y+4$, by clearing Eq. (2) of fractions.

$$
116 y=124 x+4 x y+4, \text { by reducing. }
$$

From Eq. (1) after clearing, we find $y=\frac{20 x}{20-x}$; this being substituted in the last equation, gives, after ciearing of fractions and reducing,
$11 x^{2}-39 x=20$; from which
$x=4$; hence $y=5$.
(15) Let x and y represent the rates of travel of A and B ; then $\quad 2 x=$ distance A travels in 2 hours at x miles per hour,
and $\quad 2 x+1=$ distance A travels in 2 hours at $x+\frac{1}{2}$ miles per hour.
$30-2 x=$ distance A travels after 13 starts, in 1st case;
$42-(2 x+1)=41-2 x=$ distance A travels after
B starts, in 2d case.
Therefore $\quad \frac{30-2 x}{x}=\frac{30}{y}, \quad$ (1);

$$
\frac{41-2 x}{x+\frac{1}{2}}=\frac{42}{y+\frac{1}{2}}, \quad \text { (2). }
$$

Clearing Eq. (1) of fractions, and reducing, we find

$$
y=\frac{15 x}{15-x} .
$$

Clearing Eq. (2) of fractions, and reducing, we get

$$
41 y-2 x y=43 x+\frac{1}{2} .
$$

Substituting the value of y before found, in this equation clearing of fractions, and reducing, we get

$$
26 x^{2}-59 x=15 ;
$$

from which

$$
x=2 \frac{1}{2} ; \text { lience } y=3 .
$$

(10) Let $x=$ the number of miles B traveled; then $x+30=$ the number of miles \mathbf{A} traveled.
Then since the distance traveled, divided by the number of days spent in traveling, gives the number of miles traveled per day,

$$
\begin{aligned}
\frac{x}{4} & =\text { A's rate of travel ; } \\
\frac{x+30}{9} & =\text { B's rate of travel. }
\end{aligned}
$$

Then dividing the distance traveled by each man's rate of travel,

$$
\begin{aligned}
& (x+30) \div \frac{x}{4}=\frac{4(x+30)}{x}=\text { days A traveled. } \\
& x \div \frac{x+30}{9}=\frac{9 x}{x+30}=\text { days B traveled. }
\end{aligned}
$$

But they both traveled the same number of days, thera.
fore, $\quad \frac{4(x+30)}{x}=\frac{9 x}{x+30}$;
$4(x+30)^{2}=9 x^{2}$, by clearing of fractions ;
$2(x+30)=3 x$, by extractirig the square root ;
from which $\quad x=60$; hence $x+30=90$,
and $\quad 60+90=150$ miles, the distance from A to B.

ARITHMETICAL PROGRESSION.

Article 222.

(11) Here $n=20, a=16 \frac{T}{1}^{\frac{1}{2}}, d=48 \frac{1}{4}-16 \frac{1}{12}=32 \frac{1}{6}$. $l=a+(n-1) d=16_{1}^{\frac{1}{2}}+(20-1) 32 \frac{1}{6}=16_{1} \frac{1}{2}+611 \frac{1}{6}=627 \frac{1}{6}$

Article 223.

(5) Here $l=a+(n-1) d=10-3 \times 9=-17$.

$$
s=(l+a) \frac{n}{2}=(-17+10) \frac{10}{2}=-35 .
$$

Article 225.

> EXAMPLES.
(1) $s=(l+a) \frac{n}{2}=(1+1000) \frac{1000}{2}=500500$,
(2) $\quad l=a+-(n-1) d=1+(101-1) 2=201$. $s=(l+a)_{2}^{n}=(201+1)-\frac{101}{2}=10201$.
(3) First find how many times a clock strikes in 12 hours Here $a=1, l=12, n=12$,

$$
s=(12+1) \frac{12}{2}=78 .
$$

$78 \times 2=156=$ strokes per day ;
$156 \times 7=1092=$ strokes in a weck.
(4) Since the second term is 2 , the 3d term 3, and so on, the nth term is evidently n.
Or thus, $l=a+(n-1) d=1+(n-1) 1=1+n-1=n$.

$$
s=(l+a)_{\frac{n}{2}}^{n}=(n+1)_{\frac{n}{2}}^{\frac{n}{2}}=\frac{1}{2} n(n+1) .
$$

(5) Here $d=2 ; l=1+(n-1) 2=1+2 n-2=2 n-1$.

$$
s=(l+a) \frac{n}{2}=(2 n-1+1) \frac{n}{2}=n^{2} .
$$

(6) Substituting the values of l, a, and d, in the formula, $l=a+(n-1) d$, we have $29=2+(n-1) 3$; from which $n=10$.

$$
s=(l+a) \frac{n}{2}=(29+2) \frac{10}{2}=155 .
$$

(7) Substituting the values of l, a, and n, in the formula,

$$
\begin{aligned}
l & =a+(n-1) d, \text { we have } \\
10 & =6+(9-1) d ; \text { from which } d=\frac{1}{2} . \\
s=(l+a) \frac{n}{2} & =(10+6) \frac{9}{2}=72 .
\end{aligned}
$$

(8) Substituting the values of s, u, and n, in the formula, $s=(l+a) \frac{n}{2}$, we have $85=(l+10) \frac{10}{2} ;$ from which $l=7$.
Substituting the values of l, a, and n, in the formula, $i=a-(n-1) d$, we have
$7=10-(10-1) d$; from which $d=\frac{1}{3}$.
(9) Substituting the values of a, b, and m, in the formula, $d=\frac{b-a}{m+1}$, we have $d=\frac{16-1}{4+1}=3$.
Hence the series is $1,4,7,10,13,16, \& c$.
(J0) Substituting the values of a, and d, in the formula, $l=a+(n-1) d$, we have $l=24-4(n-1)=28-4 n$; substituting this value of l, and those of s and a in the formula,
$s=(l+a) \frac{n}{2}$, we have $72=(28-4 n+24) \frac{n}{2}$; from which. by reducing, $n^{2}-13 n=-36$.
From this equation $n=+9$, or +4 .
(11) Let $n=$ the number of acres; then the nth acre evidently cost n dollars.
Substituting n for l in the formula, $s=(l+a) \frac{n}{2}$, and for s and a their values, we get

$$
\begin{aligned}
& 12880=(n+1) \frac{n}{2} ; \text { by reducing } \\
& n^{2}+n=25760 ; \text { from which } n=160 .
\end{aligned}
$$

Having the number of acres, the average price per acre is easily found.
(12) Let $x=$ the number of days; then on the x th day, A will travel $x a$, or $a x$ miles. Hence, to find the sum of the series, we have the first term $a=a, d=a$, and $l=a x$; substituting these in the formula, $s=(l+a) \frac{n}{2}$, we have

$$
s=(a x+a) \frac{x}{2}=\frac{1}{2} a x(x+1) .
$$

Then in ($x-4$) days, B travels $9 a(x-4)$ miles;
Therefore $\quad \frac{1}{2} a x(x+1)=9 a(x-4)$; reducing,

$$
x^{2}-17 x=-72 ; \text { from which } x=8 \text {, or } 9 .
$$

(13) Let $n=$ the number of hours.

Then $l=a+(n-1) d=5+(n-1) 1=4+n$;

$$
s=(l+a)_{2}^{n}=(4+n+5)_{2}^{n}=\frac{n}{2}(9+n) .
$$

Therefore

$$
\frac{n}{2}(9+n)=6\left(3 \frac{1}{3}+n\right) .
$$

By reducing $n^{2}-3 n=40$; from which $n=8$.
(14) Let $x=$ the number of hours; then the formula,

$$
l=a-(n-1) d \text { becomes } l=4-\frac{1}{2}(x-1)=4 \frac{1}{2}-\frac{1}{2} x ;
$$

$s=(l+a) \frac{n}{2}$, becomes $\cdot s=\left(4 \frac{1}{2}-\frac{1}{2} x+4\right)_{\frac{x}{2}}^{x}=\left(8 \frac{1}{2}-\frac{1}{2} x\right)_{2}^{x} ;$
but in x days, A travels $3 x$ miles;
therefore $3 x=\left(8 \frac{1}{2}-\frac{1}{2} x\right) \frac{x}{2}$; dividing both sides by x and reducing, we find $x=5$.

GEOMETRICAL PROGRESSION.

Article 220.

(4) In this example the ratio is $-\frac{1}{3}$.

$$
s=\frac{a}{1-r}=\frac{1}{1-\left(-\frac{1}{3}\right)}=\frac{1}{\frac{4}{3}}=\frac{3}{4} .
$$

(5) Here the ratio is $\frac{1}{x^{2}}$.

$$
s=\frac{a}{1-r}=-\frac{1}{1-\frac{1}{x^{2}}}=\frac{x^{2}}{x^{2}-1} .
$$

(6) Here the ratio is $-\frac{b}{a}$.

$$
s=\frac{a}{1-r}=\frac{a}{1-\left(-\frac{b}{a}\right)}=\frac{a}{1+\frac{b}{a}}=\frac{a^{2}}{a+\bar{b}} .
$$

(7) Here the ratio is $\frac{1}{2}$.

$$
s=\frac{a}{1-r}=\frac{10}{1-\frac{1}{2}}=\frac{10}{\frac{1}{2}}=20 .
$$

AMBIGUOUS AND ERRONEOUS EXPRESSIONS.

As this work is intended especially for the assistance of young teachers it is thought proper, in conclusion, to call attention to some loose and inaccurate expressions, that are occasionally used in the school room, and which are also to be found in some of the works intended for text books.

Too much importance cannot be attached to clearness and prepriety of expression. Accuracy of style has a tendency to produce accurary of thought. Every definition should be expressed in language the most precise, brief, and clear, of which it is susceptible; while all explanations and directions, whether contained in the text book or delivered by the teacher, should be given in such a manner, that the pupil cannot possibly mistake the meaning.

Lost some should regard matters of this kind as unworthy of notice, it is proper to add that great attention is paid to them by the French Mathematicians; hence, many of their works exhibit a perspicuity and simplicity, and a logical clearness of arrangement, which add greatly to their value.
"Place the two quantities under each other." This is not possible, one of the quintities may be under the other, hut each cannot be under the other at the same time. It should be specified which is to be placed below the other.
"Subtract the numerators from each other." It should be specified which is to be taken from the other.
"Find the difference of $x^{2}-a^{2}$ and a^{2}." When numbers are referred te, this expression is correct, but in the case here presented, the difference is either $x^{2}-2 a^{2}$, or $2 a^{2}-x^{2}$. It should always be specified which of the two quantities is to be subtracted.
" Divide the numerators by each other, if they will exactly divide." This expression has no clear meaning, and the word divide at the close of the sentence is used improperly.
"The two first numbers." "The three first numbers," \&c. These expressiens are frequently used. When two or more things are considered in regard to order, only one can properly be called first ; bence, there is no such thing as the two first. However, we can with propriety say "the first two," because there may be a secend two, a third two, and se on.
"Neither the first nor the last terms are squares." This should be, " neither the first nor the last term is a square."
"This value is the greatest of all others." Here others ought to be omitted, or it might be, " this value is greater than any other."
"An equation of the second degree or power." Equations are of different degrees, but no equation is of the sceend or any other power.

These cxamples might be greatly extended. The preceding are given merely as specimens. Such expressions confuse the mind of the pupil and often prevent a clear and accurate understanding of the subject under oxammation. They cannot, therefore, be regarded with indifference by anf one who aspires to the character of an accomplished teacher.

K EY

TO

RAY'S ALGEBRA, PART SECOND.

05 The numbers in parentheses, as seen in the margin, refer to the corresponding number of example, under the same article in the Algebra.

GREATEST COMMON DIVISOR.

Article 108.

Note.-This article contains the first examples in the Algebra which the attenlive student will find any real difficulty in solving.

$$
\begin{array}{cl}
\begin{array}{ll}
a^{4}-x^{4} & \underline{\mid a^{3}+a^{2} x-a x^{2}-x^{3}} \\
\frac{a^{4}+a^{3} x-a^{2} x^{2}-a x^{3}}{-a^{3} x+a^{2} x^{2}+a x^{3}-x^{4}} & \frac{\mid a+1}{\text { After dividing we find the }} \\
=-x\left(a^{3}-a^{2} x-a x^{2}+x^{3}\right) & \text { first remainder contains a fac- } \\
a^{3}-a^{2} x-a x^{2}+x^{3} \\
\frac{a^{3}+a^{2} x-a x^{2}-x^{3}}{-2 a^{2} x+2 x^{3}} & \text { tor, } x, \text { not found in the di- } \\
-2 x\left(a^{2}-x^{2}\right) & \text { veled. hence it should be can }
\end{array} \tag{5}\\
\text { cee Note 3. }
\end{array}
$$

By dividing $a^{3}+a^{2} x-a x^{2}-x^{3}$ by $a^{2}-x^{2}$ we find there is no remainder, hence the latter is the greatest common divisor required.
(6)

$$
\begin{aligned}
& \frac{x^{3}-5 x^{2}+13 x-9}{x^{3}-2 x^{2}+4 x-3} \\
& \frac{x^{3}-3 x^{2}+9 x-6=-2 x^{2}+4 x-3}{x^{3}-3 x^{2}+2 x} \\
& \left.\frac{x^{2}+2 x-3}{x^{2}-2 x}-3 x+2\right) \\
& \frac{x^{2}-3 x+2}{x-1}
\end{aligned}
$$

$x-1$ will be found to divide $x^{2}-3 x+2$ withont a remainder ; it is, therefore, the greatest common divisor.

Notre.- In the solution of the remaining questions in this article, wo shall meroly exiubit so much of the operation as is necessary to slow how the greatest common divisor is obtained. The reasons for the different steps of the operation will be found in the rule, or in the rotes following it.
(7)

$$
\begin{aligned}
& -75 x^{2}+219 x-144 \text { The 4th line is obtained } \\
& -75 x+775 x-700 \text { by multiplying the divisor } \\
& -556 x+556 \text { by -3. } \\
& -556(x-1) \quad \text { Ans. } x-1 \text {. }
\end{aligned}
$$

(8) Multiplying the first polynomial by 2 to render it divisible by the second, and dividing by x (Note 3), we have

$42 x^{2}-52 x+16$	
$42 x^{2}-7 x-14$	
$-45 x+30$	
$-15(3 x-2)$.	$\frac{6 x^{2}-x-2}{7}$
Ans. 3x-2.	

(9)

$$
\begin{aligned}
& \frac{2 x^{4}+11 x^{3}-13 x^{2}-99 x-45}{2 x^{4}-7 x^{3}-46 x^{2}-21 x} \frac{18 x^{3}+33 x^{2}-78 x-45}{\mid x-1-9} \\
& \frac{18 x^{3}-63 x^{2}-414 x-189}{96 x^{2}+336 x+144} \\
& 48\left(2 x^{2}+7 x+3\right) \\
& \text { Ans. } 2 x^{2}+7 x+3 .
\end{aligned}
$$

(10) Multiplying the first polynomial by 7 to render it divisible by the second, we have

$$
\begin{aligned}
& \frac{7 x^{4}+14 x^{2}+63}{7 x^{4}-11 x^{3}+15 x^{2}+9 x} \frac{11 x^{3}-9 x^{3}-11 x^{2}+15 x+9}{19+63} \\
& 77 x^{3}-7 x^{2}-63 x+41 \\
& \frac{77 x^{3}-121 x^{2}+165 x+99}{114 x^{2}-298 x+342} \\
& 114\left(x^{2}-3 x+3\right)
\end{aligned} \quad \text { Multiply by } 7 .
$$

11) Multiplying the second polynomial by 2 , and dividing bo the tirst, we have

$$
\begin{aligned}
& 48 x^{3}-44 x^{2}+34 x-10 \\
& \frac{48 x^{3}+16 x^{2}-15 x}{-60 x^{2}+49 x-10} \\
&-440 x^{2}+196 x-40 \\
&-240 x^{2}-80 x+75 \\
& \frac{276 x-115}{}= \underline{\mid 48 x^{2}+16 x-15} \\
& \text { Ans. } 12 x-5.5
\end{aligned}
$$

(12) This example presents no difficulty whatever

(14) In this example $2 b$ is a factor of the first polynomial, and $3 a$ of the seeond. Canceling these factors, arranging the terms in both, and multiplying the second by 4 , to render it divisible by the first, we have

$$
\begin{aligned}
& \frac{12 a^{3}-12 a^{2} b+4 a b^{2}-4 b^{3}}{12 a^{3}-15 a^{2} b+3 a b^{2}} \\
& \frac{3 a^{2} b+a b^{2}-4 b^{3}}{4} \\
& \frac{4 a^{2}-5 a b+b^{2}}{12 a^{2} b+4 a b^{2}-16 b^{3}} \\
& \frac{12 a^{2} b-15 a b^{2}+3 b^{3}}{19 a b^{2}-19 b^{3}} \\
& 19 b^{2}(a-b)
\end{aligned} \quad \text { Ans. } a-b .
$$

$$
\begin{gather*}
x^{4}-p x^{3}+(q-1) x^{2}+p x-q \tag{15}\\
x^{4}-q x^{3}+(p-1) x^{2}+q x-p
\end{gather*} \frac{\mid x^{4}-q x^{3}+(p-1) x^{2}+q x-p}{1}
$$

$(q-p) x^{3}+(q-p) x^{2}-(q-p) x-(q-p)$,

$$
\text { or } \begin{gathered}
\frac{x^{3}+x^{2}-x-1 \text { by dividing bv } q-p}{x^{4}-q x^{3}+(p-1) x^{2}+q x-p \quad \frac{\mid x^{3}+x^{2}-x-1}{\mid x-(q+1)}} \\
\frac{x^{4}+x^{3}-x^{2}-x}{-(q+1) x^{3}+p x^{2}+(q+1) x-p} \quad \underline{-(q+1) x^{3}-(q+1) x^{2}+(q+1) x+(q+1)} \\
\frac{(p+q+1) x^{2}-(p+q+1)}{=(p+q+1)\left(x^{2}-1\right) . \quad \text { Ans. } x^{2}-1 .}
\end{gathered}
$$

LEAST COMMON MULTIPLE.

Article 113.

(4) From Arts. 85 and 86 it is obvious that $a+x$ is the only divisor of hoth the quantities. Hence, (Art. 113) $\left(a^{3}+x^{3}\right)$ $\left(a^{2}-x^{2}\right) \div(a+x)=\left(a^{3}+x^{3}\right)(a-x)=a^{4}-a^{3} x+a x^{3}-x^{4} . \quad$ Ans.
(5) The quantities separated into their prime factors are $2 \times 2 a(a+x), 2 \times 2 \times 3 x^{2}(a-x)$, and $3 \times 3 \times 2(a+x)(a-x)$; from which we readily see that the least common multiple is $2 \times 2 \times 3$ $\times 3 a x^{2}(a+x)(a-x)=36 a x^{2}\left(a^{2}-x^{2}\right)$.
(6) The first quantity divides the second, but not the third, and the second and third have no common factor; therefore, the least common multiple of the three quantities is the product of the second and third.
(7) By examining these quantities we see that the second quantity is divisible by the first, and the fourth by the third, and that these are the only cases of divisibility among the four quantities ; hence, their least common multiple will be the product of the second and fourth quantities.
(8) By factoring the several quantities, we find the first is $=(x+1)(x-1)$, the $2^{n d}=x^{2}+1 ; 3^{\text {rd }}=(x-1)(x-1) ; 4^{4}$ $=(x+1)(x+1) ; 5^{\text {th }}=(x-1)\left(x^{2}+x+1\right) ; 6^{h}=(x+1)\left(x^{2}-x+1\right.$, It will now be seen that if we omit the third and fourth quantities the remaining quantities vill contain the factors of these, and no other factor not necessary to be found in the last common multiple. Hence, the l. c. m. will be $\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{3}-1\right)\left(x^{3}+1\right)$ $=\left(x^{4}-1\right)\left(x^{6}-1\right)=x^{10}-x^{6}-x^{4}+1$.
(9) It is easilv seen that 8 is the least common nultiple of
the numerical factors, and that of the literal factors, $1-x$, is the only one common to two of them. Hence, the least common multiple is $8(1-x)(1-x)(1+x)\left(1+x^{2}\right)=8(1-x)\left(1-x^{2}\right)\left(1+x^{2}\right)$ $=8(1-x)\left(1-x^{4}\right)$.
(10) We first find the greatest commen divisor of the $1^{4 t}$ and $2^{\text {na }}$ polynomials, to be $x-3$; then of the $1^{1 t}$ and $3^{r d}$ to be $3 x-2$. Hence,

$$
\begin{aligned}
& 3 x^{2}-11 x+6=(x-3)(3 x-2) \text { It is evident the least } \\
& 2 x^{2}-7 x+3=(x-3)(2 x-1) \quad \text { common multiple is } \\
& 6 x^{2}-7 x+2=(2 x-1)(3 x-2) \\
& (x-3)(3 x-2)(2 x-1) \\
& =6 x^{3}-25 x^{2}+23 x-6 \text {. }
\end{aligned}
$$

TOREDUEEAFRACTIONTOETSLOWESTTERMS.

Article 119.

The only difficulty in solving any of the examples in this article, consists in finding the greatest common divisor of the two terins. In general it may be easily found by the rule (Art. 108) and in most cases by mere inspection. Thus:
(13) From Art. 86 we know that $x+1$ is a divisor of the denomiaator ; and, by trial, it will be found to divide the numerator.
(14) The numerator is the square of $2 x-3 a$ (Art. 79), and from Art. 83 this will also divide the denominator, since $8 x^{3}-27 a^{3}$ $=(2 x)^{3}-(3 a)^{3}$.
(15) Canceling x in the denominator and multiplying the other factor by 5 , we have

$$
\begin{aligned}
\frac{135 x^{3}+315 x^{2}-60 x-140}{135 x^{3}+315 x^{2}+27 x+63} & \frac{115 x^{3}+35 x^{2}+3 x+7}{\mid 9} \\
-29 x-203 & \text { g. c. d. }=3 x+7 .
\end{aligned}
$$

(16) Setting aside the factor 2 , which is common to all the terms of the numerator and denominator, as a part of the com mon divisor, and then multiplying the numerator by 4 to render it divisible by the denominator, the remaindes of the operation to Gnd the g. c d. is,

$$
\begin{gathered}
\begin{array}{l}
4 x^{3}+16 x^{2} y+32 x y^{2}+32 y^{3} \\
\frac{4 x^{3}+2 x^{2} y-12 x y^{2}}{14 x^{2} y+44 x y^{2}+32 y^{3}} \\
\frac{2}{28 x^{2} y+88 x y^{2}+64 y^{3}} \\
\frac{28 x^{2} y+14 x y^{2}-84 y^{3}}{74 x y^{2}+148 y^{3}} \\
74 y^{2}(x+2 y) .
\end{array}
\end{gathered}
$$

$x+2 y$ will be found to divide $4 x^{2}+2 x y-12 y^{2}$, herefore $2(x+2 y)$ is the greatest common divisor of both terms.
(18) $a c+b y+a y+b c=(a+b) c+(a+b) y=(a+b)(c+y)$;
$a f+2 h x+2(a c+-b f=(a+b) f+(a+b) 2 x=(a+b)(f+2 x)$.
Hence $a+b=$ greatest c. d. of both terms.
(19) $6 a c+10 h c+9 a x+15 b x=(2 c+3 x) 3 a+(2 c+3 x) 5 b$
$=(2 c+3 x)(3 a+5 b)$.
$6 c^{2}+9 c x-2 c-3 x=(2 c+3 x) 3 c-(2 c+3 x)$
$=(2 c+3 x)(3 c-1)$.
Hence $2 c+3 x=$ greatest c. d. of both terms.

$$
\begin{align*}
& x^{8}+x^{6} y^{2}+x^{2} y+y^{3}=\left(x^{2}+y^{2}\right) x^{6}+\left(x^{2}+y^{2}\right) y \tag{20}\\
& =\left(x^{2}+y^{2}\right)\left(x^{6}+y\right) ; x^{4}-y^{4}=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right) .
\end{align*}
$$

Hence $x^{2}+y^{2}=$ g. c. d. of both terms.
$a^{3}+(a+b) a x+b x^{2}=\left(a^{2}+b x\right) a+\left(a^{2}+b x\right) x=\left(a^{2}+b x\right)(a+x)$,
$a^{4}-b^{2} x^{2}=\left(a^{2}+b x\right)\left(a^{2}-b x\right)$. Hence $a^{2}+b x=$ g. c. d.
(22) $a x^{m}-b x^{m+1}=\left(a x-b x^{2}\right) x^{m-1}=x(a-b x) x^{m-1} ; a^{2} b x-b^{3} x^{2}$
$=b x\left(a^{2}-b^{2} x^{2}\right)=b x(a+b x)(a-b x)$.
Hence $x(a-b x)=$ greatest $\mathrm{c} . d$. of both terms.
(33) $a c x^{2}+(a d+b c) x+b d=a x(c x+d)+b(c x+d)$
$=(a x+b)(c x+d) ;$
$a^{2} x^{2}-b^{2}=(a x+b)(a x-b)$. Hence $a x+b=$ g.c. d.
$a^{3}+a b^{2}-a^{2} b-b^{3}=a\left(a^{2}+b^{2}\right)-b\left(a^{2}+b^{2}\right)=(a-b)\left(a^{2}+l^{2}\right)$.
$\left.4 a^{4}-2 a^{2} b^{2}-4 a^{3} b+2 a b^{3}=2 a^{2}\left(2 a^{2}-b^{2}\right)-2 a\right)\left(2 a^{2}-i^{2}\right)$
$=\left(2 a^{2}-2 a b\right)\left(2 a^{2}-b^{2}\right)=\mathbf{2} a(a-b)\left(2 a^{2}-b^{2}\right)$.
Hence $a-b$ is the greatest c. d. of both terms.
$2 a^{2}+a b-b^{2}=a^{2}+a b+a^{2}-b^{2}=a(a+b)+(a+b)(a-b)$
$=(a+b)(a+a-b)=(a+b)(2 a-b)$.
$a^{3}+\alpha^{2} b-a-b=a^{2}(a+b)-(a+b)=\left(a^{2}-1\right)(a+b)$.
Hence $a+b$ is the greatest c. d. of hoth terms.

Art. 120. Ex. 7.- The following is the operation of finding he greatest common divisor of the two terms:

$$
\begin{aligned}
& \frac{3 x^{3}-3 x^{2}-63 x+135}{3 x^{3}-2 x^{2}-21 x} \\
& \frac{\left.\mid 3 x^{2}-2 x-2\right]}{-x^{2}-42 x+135} \\
& \frac{3 x-1}{-3 x^{2}-126 x+405} \\
& \frac{-3 x^{2}+2 x+21}{-128 x+384} \\
& -128(x-3)
\end{aligned} \quad x-3=\text { g.c.d. }
$$

ADDITION AND SUBTRACTION OF FRACTIONS.

Article 130.

EXAMPIESINADDITION OF FRACTIONS.
(12) Reduce the first fraction to the same denominator as the second, by multiplying both terms by $x+a$; the sum of the first two fractions will then be found to be $\frac{2 x+5 a}{(x+a)^{2}}$. The sum of this and the third fraction is then readily found by multiplying each numerator by the denominator of the other and taking the sum of the products for the numerator of the result, and the product of the twe denominators for the denominator of the result.
(13) The least common multiple of the denominators is readily found to be $4 a^{3}(a+x)(a-x)\left(a^{2}+x^{2}\right)=4 a^{3}\left(a^{4}-x^{4}\right)$. We then find for the numerators of the respective fractions, the following quantities:

$$
\begin{aligned}
& 1^{\text {nd }}(a-x)\left(a^{2}+x^{2}\right) \cdot \cdots=a^{3}+a x^{2}-a^{2} x-x^{3} \\
& 2^{n d}(a+x)\left(a^{2}+x^{2}\right) \cdot \cdots=a^{3}+a x^{2}+a^{2} x-x^{3} \\
& 3^{\text {nd }} 2 a(a+x)(a-x) \cdot \cdot=2 a^{3}-2 a x^{2} \\
& \text { Sum }=\frac{4 a^{3}}{4 a^{3}\left(a^{4}-x^{4}\right)}=\frac{1}{u^{4}-x^{4}} \cdot \text { Ans. }
\end{aligned}
$$

(14) It is most convenient to make the common denominator gf the fractions, $a b c(a-b)(a-c)(b-c)$. In doing this we must shange the signs of the factor, $b-a$, in the denominator of the second fraction, which may be done if at the same time we change 'he sign of the numerator (Art. 124). The value of the third
fraction will not be altered if we change the signs of both the factors $c-a$ and $c-b$, so as to have $a-c$ and $b-c$. Hence

$$
\begin{aligned}
& \frac{1}{a(a-b)(a-c)}=\frac{b c(b-c)}{a b c(a-b)(a-c)(b-c)} ; \\
& \frac{1}{b(b-a)(b-c)}=\frac{-a c(a-c)}{a b c(a-b)(a-c)(b-c)} ; \\
& \frac{1}{3(c-a)(c-b)}=\frac{a b(a-b)}{a b c(a-b)(a-c)(b-c)} .
\end{aligned}
$$

The sum of the numerators is $b c(b-c)-a c(a-c)+a b(a-b)$: which, by performing the multiplications indicated, and reducing gives the same result as $(a-b)(a-c)(b-c)$. Hence, this product may be canceled in both terms, and the sum of the three fractions is found $=\frac{1}{a b c}$.

(14) By reducing the third fraction to its lowest terms it becomes $\frac{x^{3}}{y(x+y)}$. The second fraction subtracted from the first leaves $\frac{x^{2}+x y+y^{2}}{y(x+y)}$. Subtracting the preceding from this leaves $\frac{x y+y^{2}}{y(x+y)}=1 . \quad$ Ans.

$$
\begin{aligned}
& \text { (15) } \frac{1}{x-1}-\frac{1}{2(x+1)}=\frac{2(x+1)-(x-1)}{2\left(x^{2}-1\right)}=\frac{x+3}{2\left(x^{2}-1\right)} ; \\
& \frac{x+3}{2\left(x^{2}-1\right)}-\frac{x+3}{2\left(x^{2}+1\right)}=\frac{(x+3)\left(x^{2}+1\right)-(x+3)\left(x^{2}-1\right)}{2\left(x^{4}-1\right)}=\frac{x+3}{x^{1}-1} .
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{x^{3}}+\frac{1}{x^{2}}-\frac{1}{x}=\frac{1+x-x^{2}}{x^{3}} . \tag{16}\\
& \frac{x-1}{x^{2}+1}-\frac{1}{\left(x^{2}+1\right)^{2}}=\frac{x^{3}-x^{2}+x-1-1}{\left(x^{2}+1\right)^{2}}=\frac{x^{3}-x^{2}+x-2}{\left(x^{2}+1\right)^{2}} .
\end{align*}
$$

$$
\frac{1+x-x^{2}}{x^{3}}=\frac{1+x-x^{2}}{x^{3}} \times \frac{\left(x^{2}+1\right)^{2}}{\left(x^{2}+1\right)^{2}}=\frac{-x^{6}+x^{5}-x^{4}+2 x^{3}+x^{2}+x+1}{x^{3}\left(x^{2}+1\right)^{\frac{2}{2}}}
$$

$$
\begin{aligned}
\frac{x^{3}-x^{2}+x-2}{\left(x^{2}+1\right)^{2}} \times \frac{x^{3}}{x^{3}} & =\frac{x^{6}-x^{5}+x^{4}-2 x^{3}}{x^{3}\left(x^{2}+1\right)^{2}} \\
\text { Sum } & =\frac{x^{2}+x+1}{x^{2}\left(x^{2}+1\right)^{2}} . \quad \text { Ans }
\end{aligned}
$$

MOLTIPLICATION AND DIVISION OFFRACTIONS.

Article 131.

Remark. - In the solution of all questions in multiplication or division of fractions, it is important to separate the quantities into fuctors, before performing any actual multiplications, as this might so involve the fuctors that they could not be readily discovered. By attention to factoring uearly all the examples are easily solved.

(14. $p r+(p q-q r) x+q^{2} x^{2}=(p+q x) r+(p+q x)(q x=(p+q x)$
($r+q x$);
$p s+(p t-q s) x+q t x^{2}=(p-q x) s+(p-q x) t x=(p-q x)(s+h x)$
The factors in the denominator of the product will cancel the factors $p-q x$ and $p+q x$ in the numerator, leaving for the result $(r+q x)(s+t x)=r s+(r t+q s) x+q L x^{2}$.

aricle 132.

(8) In solving this and the next two examples, first perform the operation indicated in the parentheses. A similar remark applies to example 12.

$$
\begin{align*}
& \text { (14) } x^{4}-\frac{1}{x^{4}}=\frac{x^{8}-1}{x^{4}}=\frac{\left(x^{4}-1\right)\left(x^{4}+1\right)}{x^{4}}=\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}+1\right)}{x^{4}} ; \tag{14}\\
& x-\frac{1}{x}=\frac{x^{2}-1}{x} \\
& \frac{\left.x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}+1\right.}{x^{4}} \times \frac{x}{x^{2}-1}=\frac{\left(x^{2}+1\right)\left(x^{4}+1\right)}{x^{3}}=\frac{x^{8}+x^{4}+x^{2}+1}{x^{3}} \\
& =x^{3}+x+\frac{1}{x}+\frac{1}{x^{3}}, \text { or } x^{3}+\frac{1}{x^{3}}+x+\frac{1}{x} .
\end{align*}
$$

This example may also be readily solved by ordinary division.

Article 133.

Remark. - In the solution of the examples in this article the first step is to perform the operations indicated in the respective terms. By doing this they are all easily solved, except the 5th, of which the solution it here given.

$$
\begin{aligned}
& \frac{1}{a}+\frac{1}{a b^{3}}=\frac{b^{3}+1}{a b^{3}}=\frac{(b+1)\left(b^{2}-b+1\right)}{a b^{3}},(\text { Art. 83); } \\
& b-1+\frac{1}{b}=\frac{b^{2}-b+1}{b} ; \\
& \frac{(b+1)\left(b^{2}-b+1\right)}{a b^{3}} \times \frac{b}{b^{2}-b+1}=\frac{b+1}{a b^{2}} . \quad \text { Ans. }
\end{aligned}
$$

MISCELLANEOUS EXERCISES IN FRACTIONS.
(2) To reduce these fractions to a common denominator, it will be most convenient to change the signs of the factors as in the solution to Ex. 14, Addition of Fractions, so that the common denominator may be $(a-b)(a-c)(b-c)$.

$$
\begin{aligned}
& \frac{a^{2}+a+1}{(a-b)(a-c)}=\frac{a^{2}+a+1}{(a-b)(a-c)} \times \frac{b-c}{b-c}=\frac{a^{2} b-a^{2} c+a b-a c+b-c}{(a-b)(a-c)(b-c)} \\
& \frac{-b^{2}-b-1}{(a-b)(b-c)}=\frac{-b^{2}-b-1}{(a-b)(b-c)} \times \frac{a-c}{a-c}=\frac{-a b^{2}+b^{2} c-a b+b c-a+c}{(a-b)(a-c)(b-c)} \\
& \frac{c^{2}+c+1}{(a-c)(b-c)}=\frac{c^{2}+c+1}{(a-c)(b-c)} \times \frac{a-b}{a-b}=\frac{a c^{2}-b c^{2}+a c-b c+a-b}{(a-b)(a-c)(b-c)}
\end{aligned}
$$

$$
\text { Sum }=\frac{a^{2} b-a b^{2}-a^{2} c+b^{2} c+a c^{2}-b c^{2}}{a^{2} b-a b^{2}-a^{2} c+b^{2} c+a c^{2}-b c^{2}}=\quad \text { Ans. }
$$

(3) Perform the operations indicated before substituting the value of x.

$$
\begin{align*}
& \frac{3 x-3}{3}-\frac{3 x-1}{4}=-\frac{x+9}{12} ;-\frac{x+9}{12} \times \frac{2}{x-1}=\frac{-x-9}{6(x-1)} \tag{4}\\
& \quad \frac{x}{2}-\left\{\frac{-x-9}{6(x-1)}\right\}=\frac{3 x(x-1)+x+9}{6(x-1)}=\frac{3 x^{2}-2 x+9}{6(x-1)} \\
& \therefore=\frac{3 \times^{1}}{6 \times 3-80^{2}+9}-\frac{56_{3}^{2}}{90}=\frac{170}{60}=22_{6}^{5} . \quad \text { Ans. }
\end{align*}
$$

(6)

$$
\begin{gathered}
x+2 a=\frac{4 a b}{a+b}+2 a=\frac{6 a b+9 a^{2}}{a+b} ; \\
x-2 a=\frac{4 a b}{a+b}-2 a=\frac{2 a b-2 a^{2}}{a+b} ; \\
1^{n t} \text { fraction }=\frac{6 a b+2 a^{2}=3 b+a}{2 a b-2 a^{2}} \frac{-a-3 b}{a-b} \\
x+2 b=\frac{4 a b}{a+b}+2 b=\frac{6 a b+2 b^{2}}{a+b} ; \\
x-2 b=\frac{4 a b}{a+b}-2 b=\frac{2 a b-2 b^{2}}{a+b} ; \\
2^{n d} \text { fraction }=\frac{6 a b+2 b^{2}}{2 a b-2 b^{2}}=\frac{3 a+b}{a-b} \\
\frac{-a-3 b}{a-b}+\frac{3 a+b}{a-b}=\frac{2 a-2 b}{a-b}=2 . \quad \text { Ans. }
\end{gathered}
$$

(7) Substituting the value of x we have

$$
\begin{gathered}
\frac{a^{n}}{2 n a^{n}-n a^{n}-n b^{n}}+\frac{b^{n}}{2 n b^{n}-n a^{n}-n b^{n}} \\
=\frac{a^{n}}{n a^{n}-n b^{n}}+\frac{b^{n}}{n b^{n}-n a^{n}}=\frac{a^{n}}{n a^{n}-n b^{n}}+\frac{-b^{n}}{n a^{n}-n b^{n}} \\
=\frac{a^{n}-b^{n}}{n a^{n}-n b^{n}}=\frac{a^{n}-b^{n}}{n\left(a^{n}-b^{n}\right)}=\frac{1}{n} . \quad \text { Ans. }
\end{gathered}
$$

(8) $\frac{x+y}{x y}=\frac{\frac{x}{x y}+\frac{y}{x y}}{1}=\frac{1}{y}+\frac{1}{x}\left\{\begin{array}{l}\text { By dividing both } \\ \text { torms of each frac- } \\ \text { thon by } x y, \text { and re- } \\ \text { ducing. }\end{array}\right.$

Similarly
(9) Let x represent the value of one fraction, and y that of the other ; then $x+y=1$.

Multiply each side of this equality by $x-y$ (see Note, page 61), and we have
$x^{2}-y^{2}=x-y$, which proves the proposition.
(10). Let x and y represent the fractions, then
$x-y=\frac{p}{q}$; multiply both sides by q, then $(x-y)=p$.

Multiply both sides of this equality by $x+y$; then

$$
\begin{aligned}
& q\left(x^{2}-y^{2}\right)=p(x+y) \\
& \text { or } \quad p(x+y)=q\left(x^{2}-y^{2}\right) .
\end{aligned}
$$

(11) First.- Let $(a-b)(a-c)(b-c)$ be the common denomina. tor of the three fractions, then we must change the signs of the numerator of the secoud fraction, and the signs of the first factor of the denominator. We must also change the signs of both factors of the denominator of the second fraction. The numerators of the respective fractions when reduced to a common denominator will be

$$
\begin{aligned}
\left(a^{2}+h^{2}\right)(b-c) & =a^{2} b-a^{2} c+b h^{2}-c h^{2} ; \\
\left(-b^{2}-h^{2}\right)(a-c) & =-a b^{2}+b^{2} c-a h^{2}+c h^{2} ; \\
\left(c^{2}+h^{2}\right)(a-b) & =a c^{2}-b c^{2}+a h^{2}-b h^{2} .
\end{aligned}
$$

Sum of the numerators $=a^{2}(b-c)-b^{2}(a-c)+c^{2}(a-b)$;

$$
(a-b)(a-c)(b-c)=a^{2}(b-c)-b^{2}(a-c)+c^{2}(a-b) ;
$$

hence the value of the fraction is I.
Second.

$$
\begin{array}{r}
\left(a^{2}+h^{2}\right)(b-c)(b+c)=a^{2} b^{2}-a^{2} c^{2}+b^{2} h^{2}-c^{2} h^{2} ; \\
-\left(b^{2}+h^{2}\right)(a-c)(a+c)=-a^{2} b^{2}+b^{2} c^{2}-a^{2} h^{2}+\dot{c}^{2} h^{2} ; \\
\left(c^{2}+h^{2}\right)(a-b)(a+b)=a^{2} \varphi^{2}-b^{2} c^{2}+a^{2} h^{3}-b^{2} h^{2} .
\end{array}
$$

The sum of the numerators is 0 , hence the sum of the fractions is 0 .

Third. $\quad\left(a^{2}+h^{2}\right)(b-c) b c=a^{2} b^{2} c-a^{2} b c^{2}+b^{2} c h^{2}-7 c^{2} h^{2} ;$

$$
\begin{aligned}
-\left(b^{2}+h^{2}\right)(a-c) a c & =-a^{2} b^{2} c+a b^{2} c^{2}-a^{2} c h^{2}+a c^{2} h^{2} \\
\left(c^{2}+h^{2}\right)(a-b) a b & =a^{2} b c^{2}-a b^{2} c^{2}+a^{2} b h^{2}-a b^{2} h^{2} .
\end{aligned}
$$

The sum of the numerators is $\hbar^{2}\left\{a^{2}(b-c)-b^{2}(a-c)+c^{2}(a-b)\right\}$ and since the denominator is the quantity within the brackets, the value of the fraction is h^{2}.

EQUATIONS OF THE FIRS'T DEGREE.

Remarks. - The attentivo student will find no difficulty with the examples in Articles 151, and 153, provided he attends carefully to tho rules. (See Remark on page 14, of the Key to Part First.)

The ease and facility with which soveral of the examples may be solved, will depend on the particular method of solution The shortest methods, howover, are not always the best for learners. It is important
even at the risk of being tedions, that the pupil uaderstand every step of the operation. Let the aim be first to perform the operations correctly and understandingly, and after this with facility.

In some cases it is better to perform the operations indicated before clearing the equation of fractions. To illustrute this we will take example 27, Art. 153.

Multiplying the terms in the parentheses in the second member o5 $\frac{1}{39}$ and removing it, we have

$$
\frac{1}{2}\left(x-\frac{51}{26}\right)-\frac{2}{13}(1-3 x)=x-\frac{5 x}{39}+\frac{1-.3 x}{15.6}
$$

Now 156 is evidently the least common multiple of the denominators. Multiplying both members by this, we have

$$
78 x-153-24+72 x=156 x-20 x+10-3 x
$$

reducing, $17 x=187$, whence $x=11$.

QUESTIONS PRODUCINGEQUATIONS OF THEFIRST DEGREE.

Article 154.

(9) Let $x=$ the first, then $2 x=$ the second, and $3 x=$ the third: and $x+2 x+3 x=133$.
Whence $x=19,2 x=38$, and $3 x=57$.
(10) Let $x=$ the first, then $3 x=$ the second, and $4 \frac{1}{2} x=$ the third; and $x+3 x+4 \frac{1}{2} x=187$,
Whence $x=22,3 x=66$, and $4 \frac{1}{2} x=99$.
(11) Let $x=$ the second, then $3!\frac{1}{2} x=$ the first, and $3 \frac{1}{2} x-x=100$. Whence $x=40$ and $3 \frac{1}{2} x=140$.
(12) Let $x=$ the first, then $3 \frac{1}{2} x=$ the second, and $100-\left(3 \frac{1}{2} x-x\right)=100-2 \frac{1}{2} x=$ the third.
Then $x+3 . \frac{1}{2} x+100-2 \frac{1}{2} x=156$.
Whence $x=28,3 \frac{1}{2} x=98$, and $100-2 \frac{1}{2} x=30$.
13) Let $x=$ the number, then
$\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=52$.
Whence $\frac{13 x}{12}=52$, and $x=48$.
(14) Let $x=$ the number, then
$x+\frac{6 x}{7}-20=45$.
Whence $x=35$.
15) Let $x=$ the number, then
$x+\frac{x}{3}+\frac{x}{4}-\frac{x}{6}=51$.
Whence $x=36$.
(16) Let $x=$ the number, then
$4 x-40=\frac{1}{2}-x$.
Whence $x=16$.
17) Let $x=$ the number, then
$4(x+16)=10(x+1)$.
Whence $x=9$.
(18) Let $x=$ the less number, then $30-x=$ the greasor,
and $\frac{1}{4}(30-x-x)=3$.
Whence $x=9$, and $30-x=21$.
(19) Let $x=$ the number of days he worked, then 28—r:. idle days;
then $75 x-25(28-x)=1200$.
or $\frac{3}{4} x-\frac{1}{4}(28-x)=12$.
Whence $\frac{3}{4} x-7+\frac{1}{4} x=12$, or $x=19$.
(20) Let $x=\mathrm{B}$'s money, then $3 x=\mathrm{A}$'s,
and $3 x+50=4(x-50)$.
Whence $x=250$, and $3 x=750$.
(21 Let $x=$ sum, then $x-\frac{1}{2} x-20=\frac{x}{2}-20$;

$$
\begin{aligned}
& \frac{x}{2}-20-\frac{1}{3}\left(\frac{x}{2}-20\right)-30=\frac{x}{2}-\frac{x}{6}-50+\frac{20}{3}=\frac{x}{3}-\frac{13 p}{3} \\
& \frac{x}{3}-\frac{130}{3}-\frac{1}{4}\left(\frac{x}{3}-\frac{130}{3}\right)-40=0 . \\
& \text { Whence } x=290 .
\end{aligned}
$$

(22) Observe that 20 per cent. is $\frac{1}{5}$ and 25 per cent. $\frac{1}{4}$

Let $x=$ capital, then $x+\frac{15 x}{100}=\frac{115 x}{100}=$ cap. close $1^{n} y r$.
$\frac{115 x}{100}+\frac{1}{5}$ of $\frac{115 x}{100}=\frac{115 x}{100}+\frac{23 x}{100}=\frac{138 x}{100}=$ cap. $2^{\text {nd }}$ y.
$\frac{138 x}{100}+\frac{1}{4}$ of $\frac{138 x}{100}=\frac{138 x}{100}+\frac{69 x}{200}=\frac{345 x}{200}=$ cap. $3^{\text {rt }} \mathrm{yr}$.
$\therefore \frac{345 x}{200}-x=1000.50$.
Whence $x=1380$.
23) Let $x=B$'s age, then $2 x=A$'s, and $3(x-22)=2 x-22$.
Whence $x=44$, and $2 x=38$.
(24) To avoid fractions we may take some multiple of x that is divisible twice by 2 . Thus,
Let $4 x=$ cost of $1^{s t}$ house, then $4 x+2 x=6 x=\operatorname{cost}$ of $2^{n d}$, and $6 x+3 x=9 x=$ cost of $3^{\text {rd }}$,
also $4 x+9 x=13 x=$ cost of $4^{1 h}$.
Hence $4 x+6 x+9 x+13 x=8000$.
Whence $4 x=1000,6 x=1500,9 x=2250$, and $13 x=3250$.
(25) Let $x=$ gallons third conveys in 1 minute,
then $3 x=$ " " " 3 minutes,
and $3 x+8=$ galls first " " 3 "
alsó $3 x-7=$ " second " " 3 "
$\begin{array}{rlllll}9 x+1 & = & \text { " all convey " } & 3 & \text { " } \\ 72 x+8 & = & \text { " } & \text { " } & \text { " } & 24\end{array}$
$\therefore \quad 72 x+8=1050$.
Whence $x=14 \frac{1}{6} \frac{7}{6}, \frac{1}{8}(3 x+8)=17 \frac{5}{36} ; \frac{1}{3}(3 x-7)=12 \frac{5}{36}$.
(27) Let $x=$ the number of days in which B can do it, then $\frac{1}{x}=$ part B does in one day ; but A does $\frac{1}{10}$, ard A and B together do $\frac{1}{7}$ in one day;
$\therefore \frac{1}{7}-\frac{1}{10}=\frac{1}{x}$. Whence $x=23 \frac{1}{3}$.
(28) Let $x:=$ the number of days in which \mathbf{A} can do it,
then $\frac{1}{x}=$ part A does in une day ; but A does $\frac{1}{4}$ of $\frac{2}{7}=\frac{1}{14}$ in onc day ; $\therefore \frac{1}{x}=\frac{1}{14}$. Whence $x=14$.
If A and B finish $\frac{5}{7}$ of the work in 6 days, they do $\frac{1}{6}$ of $\frac{5}{7}=\frac{5}{42}$ In one day; and since A does $\frac{1}{14}$ in one day, B does $\frac{5}{4}-\frac{1}{14}=\frac{1}{2} \frac{1}{1}$ io one day, or the whole in 21 days.

The solution of this question mainly depends on arithmetical analysis, and the employment of algebraic symbols can scarcely be said to be of any advantage.
(29) Let $x=$ number of each, then $3 x=$ cost of sheep, $12 x=$ cost of cows, and $18 x=$ cost of oxen.
$\therefore 3 x+12 x+18 x=330$.
Whence $x=10$.
(30) Let $x=\operatorname{sum} \mathrm{A}$ rec'd, then $x-10=$ what B rec'd ;
$x-10+16=x+6=$ what C rec'd $; x+6-5=x+1=$ what D rec'd ; $x+1+15=x+16=$ what E rec'd.
$\therefore x+1+x+16=x+x-10+x+6$.
Whence $x=21$, what A rec'd, from which, what the otlers rec'd, is readily found.
(31) Let $x=$ the number of eggs, then $\frac{x}{12}=$ number of dozen, and $\frac{x}{12} \times 18=\frac{3 x}{2}=$ cost.
$\frac{x+5}{12}=$ number of dozen if he had bought 5 more, and since the whole cost divided by the number of dozell, must give the cost of one dozen, therefore
$\frac{3 x}{2} \div \frac{x+5}{12}=$ cost of one dozen under second supposition
$\frac{3 x}{2} \div \frac{x+5}{12}=\frac{3 x}{2} \times \frac{12}{x+5}=\frac{18 x}{x+5} ;$
$\therefore \frac{18 x}{x+5}=18-2 \frac{1}{2}=15 \frac{1}{2}$.
Whence $x=31$.
(32) Let $x=$ the number bought, then $\frac{94}{x}=$ cost of eacn and $f^{\prime}(x-7)=$ one-fourth of the remainder.

EQUATIONS OFTIM FIRST DEGREE.
$20 \div \frac{1}{4}(x-7)=20 \times \frac{4}{x-7}=\frac{80}{x-7}=$ what each sold for.
$\therefore \frac{94}{x}=\frac{80}{x-7}, \quad$ Whence $x=47$.
(33) Let $x=$ the number vi hours each traveled, then $\frac{x}{2} \times 3$ $=\frac{3 x}{2}=$ miles A traveled, and $\frac{x}{4} \times 5=\frac{5 x}{4}=$ miles B trav eled; $\therefore \frac{3 x}{2}+\frac{5 x}{4}=154$.
Whence $x=56, \frac{3 x}{2}=84$, and $\frac{5 x}{4}=70$.
(34) Let $x=$ the number, then
$\frac{5 x-24}{6}+13=x$.
Whence $x=54$.
(35) Let $x=$ number of dollars, then $3 x=$ number of eagies.
$\therefore 5(x-8)=3 x-8$.
Whence $x=16$, and $3 x=48$.
(36) Let $x=$ number of apples, then $100-x=$ number of nears then $\frac{x}{10} \times 1=\frac{x}{10}=$ cost of apples;
and $\frac{100-x}{25} \times 2=\frac{200-2 x}{25}=$ cost of pears;
$\therefore \frac{x}{10}+\frac{200-2 x}{25}=9 \frac{1}{7}$.
Whence $x=75$, and $100-x=25$
137) Let $x=$ number of sheep,
then $\frac{x}{8}=$ acres ploughed, and $\frac{x}{5}=$ acres of pasture;
$\therefore \frac{x}{8}+\frac{x}{5}=325 . \quad$ Whence $x=1000$.
(38) Let, $x=$ miles he can ride, then $\frac{x}{12}=$ time of riding and $\frac{x}{4}=$ time of walking; $\therefore \frac{x}{12}+\frac{x}{4}=2$. Whence $x=6$.
(39) Let $x=$ number of lbs, then $\frac{2}{65+x}=\mathrm{lbs}$ of salt in $1 \mathrm{lb} \mathrm{b}_{\mathrm{a}}$ and $25\left(\frac{2}{65+x}\right)=\mathrm{lbs}$ of salt in 25 lbs .
$\therefore 25\left(\frac{2}{65+x}\right)=\frac{1}{4}$. Whence $x=135$.
(\$0) In every 10 lbs of the mass there are 7 lbs of copper and 3 lbs of tin ; hence in 80 lbs there are $\frac{8}{1} 8 \times 7=56 \mathrm{lbs}$ of copper, and $\frac{8}{10} \times 3=24 \mathrm{lbs}$ of tin.
Let $x=\mathrm{lbs}$ of copper to be addel, then $56+x=\mathrm{lb}$ of copper in the new mass, and $24=\mathrm{lbs}$ of tin ; and since there are 11 lbs of copper for every 4 Ibs of tin, one-eleventh of the copoer must be equal to one-fourth of the tin.

$$
\therefore \frac{56+x}{11}=\frac{24}{4} . \quad \text { Whence } x=10 .
$$

(41) Let $x=$ stock, then $x-250+\frac{1}{3}(x-250)=\frac{4 x}{3} \quad-\frac{1000}{3}=$ stock at the close of the $1^{t t}$ year.

$$
\begin{aligned}
\frac{4 x}{3} & -\frac{1000}{3}-250=\frac{4 x}{3}-\frac{1750}{3} ; \text { and } \frac{4 x}{3}-\frac{1750}{3}+\frac{1}{3}\left(\frac{4 x}{3}-\frac{1750}{3}\right) \\
& =\frac{16 x}{9}-\frac{7000}{9}=\text { stock at close of } 2^{n d} \text { year. } \\
& \frac{16 x}{9}-\frac{7000}{9}-250=\frac{16 x}{9}-\frac{9250}{9} ; \text { and } \frac{16 x}{9}-\frac{9250}{9} \\
& +\frac{1}{3}\left(\frac{16 x}{9}-\frac{9250}{9}\right)=\frac{64 x}{27}-\frac{37000}{27}=\text { stock at close of } 3^{r} \text { vr } \\
\therefore & \frac{64 x}{27}-\frac{37000}{27}=2 x .
\end{aligned}
$$

Whence $x=3700$

8IMULTANEOUS EQUATIONS OF THE FTRET DEGREE, CONTAININGTWOUN HK NOW QUANTITIES

Article 158.

(17) Divide the second equation by $a-b$ and we have

$$
(a+b)(x+y)=\frac{n}{a-b} ;
$$

$$
\begin{aligned}
& \text { or }(a+b) x+(a+b) y=\frac{n}{a-b} ; \\
& (a-b) x+(a+b) y=c ; \text { equation (1) } \\
& 2 b x=\frac{n}{a-b}-c ; \text { by subtracting (1) from (3) } \\
& \therefore x=\frac{1}{2 b}\left(\frac{n}{a-b}-c\right) .
\end{aligned}
$$

Again, dividing the second equation by $a+b$, we have

$$
\begin{align*}
& (a-b)(x+y)=\frac{n}{a+b}, \\
& \text { or } \quad(a-b) x+(a-b) y=\frac{n}{a+b} ; \tag{4}\\
& \quad(a-b) x+(a+b) y=c \tag{1}\\
& 2 b y=c-\frac{n}{a+b}, \text { by subtracting (4) from (1). } \\
& \therefore \quad y=\frac{1}{2 b}\left(c-\frac{n}{a+b}\right)
\end{align*}
$$

(.8). By multiplying eq. (1) by m, and (2) by n, and subtract. ing, we find the value of x. Again, by multiplying (1) by n and (2) by m, and subtracting, we find the value of y.
'19) Multiplying both equations by abc, transposing and factor ing, we have

$$
\begin{align*}
& (b c+a b) x+a c y=a b c \tag{1}\\
& a c x+(b c-a b) y=a b c \tag{2}
\end{align*}
$$

Multiplying the first equation by bc-ab, and the aecond by $a c_{1}$ we have

$$
\begin{gather*}
\left(b^{2} c^{2}-a^{2} b^{2}\right) x+(b c-a b) a c y=a b c(b c-a b) ; \tag{3}\\
a^{2} c^{2} x+(b c-a b) a c y=a^{2} b c^{2} \tag{4}
\end{gather*}
$$

Subtracting equation (3) from (4), and factoring, we have

$$
\begin{aligned}
& \left(a^{2} b^{2}+a^{2} c^{2}-b^{2} c^{2}\right) x=a b c(a b+a c-b c) . \\
& \text { Whence } x=\frac{a b c(a b+a c-b c)}{a^{2} b^{2}+a^{2} c^{2}-b^{2} c^{2}}
\end{aligned}
$$

Similarly, we may find the value of y by multiplying equation (1) by $a c$, and (2) by $b c+a b$, and subtracting.
(20) Transposing $b^{2} y$ in equation (2), multiplying by 3 , and factoring, we have

$$
\begin{equation*}
\left(a^{2}-b^{2}\right) 3 y+(a+b+c) 3 b x=(a+2 b) 3 a b+\frac{3 a b^{2} c}{a+b} \tag{4}
\end{equation*}
$$

Separating equation (1) into its parts, we have
$\left(a^{2}-b^{2}\right) 5 x+\left(a^{2}-b^{2}\right) 3 y=(4 a-b) 2 a b$;
Subtracting equation (4) from (1) we have

$$
\begin{equation*}
\left(5 a^{2}-5 b^{2}-3 a b-3 b^{2}-3 b c\right) x=8 a^{2} b-2 a b^{2}-3 a^{2} b-6 a b^{2}-\frac{3 c b b^{2} c}{t+b} \tag{1}
\end{equation*}
$$

Recucing and factoring,
$\left(5 a^{2}-8 b^{2}-3 a b-3 b c\right) x=\frac{a b}{a+b}\left(5 a^{2}-8^{3} 3^{2}-3 a b-3 b c\right)$.
Whence $x=\frac{a b}{a+b}$.
Substituting the value of x in equation (1) we have
$\frac{5 a b}{a+b}\left(a^{2}-b^{2}\right)+3 y\left(a^{2}-b^{2}\right)=8 a^{2} b-2 a b^{2}$; neducing,
$3 y\left(a^{2}-b^{2}\right)=3 a^{2} b+3 a b^{2}=3 a b(a+b)$,
or, $y(a-b)=a b$;
$\therefore y=\frac{a b}{a-\bar{b}}$.

QUESTIONS PRODUCING SIMULTANEOVEEQTATIONSCONTAININGTWOUNEMMWN QUANTITIES. Article 150.
(4) Let $x=$ number of sheep, and $y=$ number ω cowa then $5 x+7 y=111$,
$7 x+5 y=93$.
Whence $x=4$ and $y=13$.
(5) Let $x=\operatorname{cost}$ of 1 lb tea, and $y=\operatorname{cost}$ of 1 ih : 24, then $7 x+9 y=520$,

$$
4 x+11 y=385 .
$$

Whence $x=55$, and $y=15 \mathrm{cts}$.
(6) Lat $x=\mathrm{A}$'s money, and $y=\mathrm{B}^{\prime} \mathrm{s}$, then $x--50=y-20$,

$$
3 x+5 y=2350 .
$$

Whence $x=250$, and $y=320$.
(7) Let $6 x=$ A's money, and $5 y=B^{\prime}$, then $6 x+-5 y=9800$
also $6 x-x=5 y-y$, or $5 x-4 y=0$.
Whence $x=800$ and $y=1000$;
$\therefore 6 x=4800$ and $5 y=5000$.
(8) Let $x=$ the numerator and y the denominator of the fraction,
then $\frac{x+1}{y+1}=\frac{1}{2}$, and $\frac{x-1}{y-1}=\frac{1}{3}$.
Whence $x=3$, and $y=7$.
(9) Let $x=$ the first number and $y=$ the second,
then $\frac{x}{3}=\frac{y}{4}+3$,

$$
\frac{x}{4}+\frac{y}{5}=10
$$

Whence $x=24$ and $y=20$.
(10) Let $x=$ number of lbs , and $y=$ cost per lb , then $x y=$ cost
$\therefore 30 x-x y=100$,
$x y-22 x=300$.
Adding equations (1) and (2) together we have
$8 x=400$, whence $x=50$.
By substitution, the value of y is found $=28$.
(11) Let $x=$ number of bushels of wheat, and $y=$ bushels of corn,
then $55 x=33 y$; and $55 x+33 y=$ rent;
also $65 x+41 y-140=$ rent.
$\therefore 65 x+41 y-140=55 x+33 y$,
or $10 x+8 y=140$.
Whence $x=6$ and $y=10$.
(12) Let x and $y=$ the cubic feet which each discharges,
then $x: y:: 5 \times 8: 13 \times 7$;
$\therefore 40 y=91 x$;
also $y-x=561$.
Whence $x=440$ and $y=1001$.
From (1) it is evident that y is greater than x, therefore in (2) we write y - x.
(13) Let $5 x$ and $7 x$ represent the first two numbers, and $3 y$ and $5 y$ the other two, then
$5 x+3 y: 7 x+5 y:: 9: 13 ;$
$\therefore 65 x+39 y=63 x+45 y$, or $2 x=6 y$;
also $7 x+5 y-(5 x+3 y)=16$,
or $2 x+2 y=16$.
Whence $x=6$ and $y=2, \therefore 5 x=30,7 x=42$; and $3 y=0$ and $5 y=10$.
114) Let $x=$ number of apples, and $y=$ number of pears, then $\frac{x}{4}+\frac{y}{5}=30$, and $\frac{1}{2}$ of $\frac{x}{4}+\frac{1}{3}$ of $\frac{y}{5}$, or $\frac{x}{8}+\frac{y}{15}=13$.
Whence $x=72$ and $y=60$.
(15) Let $x=$ acres of tillable land, and $y=$ acres of pasture, then $200 x+140 y=24500$;
also $x: \frac{x-y}{2}:: 28: 9$;
$\therefore 9 x=14 x-14 y$, or $5 x=14 y$.
Whence $x=98$, and $y=35$.
(16) Let $x=$ digit in ten's place, and $y=$ digit in unit's place, then $10 x+y=$ the number, and $10 y+x=$ the number when the digits are inverted,
then $10 x+y+10 y+x=121$,
or $11 x+11 y=121$;
and $10 x+y-(10 y+x)=9$,
or $9 x-9 y=9$.
Dividing (1) by 11 , and (2) by 9 , and adding and subtracting we find $x=6$, and $y=5$.
Remark.- It may be asked why, in ohtaining equation (2), do we subtract $10 y+x$ instead of $10 x+y$, since we do not know which is the greater: The answer is, we can not tell which to subtract till we proceed to verify the result, but if we had subtracted the wrong quantity, the error would bo made known in verifying the result, by some quauUty being negative that ought to be positive. (See Art. 164.)
(17) Let $2 x-6,3 x-6$, and y be the numbers, which fulfils the first condition. The second condition gives

$$
\begin{align*}
& 2 x-1: y+5:: 7: 11, \\
& \text { or } 22 x-11=7 y+35 ; \tag{1}\\
& \text { also } 3 x-42: y-36: 6: 7,
\end{align*}
$$

EQUATIONS OFTHEFIRST DEGRFE. IIt
or $21 x-294=6 y-216$.
Whence $x=18$, and $y=50$;
\therefore the numbers are 30,48 , and 50
(18) Let x and z represent the days respectively in which is and B can do it,
then $\frac{1}{x}$ and $\frac{1}{z}=$ parts which each can do in a day.
Then $\frac{1}{x}+\frac{1}{z}=\frac{1}{16}$.
Also in 4 days A and B do $\frac{4}{x}+\frac{4}{z}$, and in 36 days B doea $\frac{36}{z}$ parts of the work;
$\therefore \frac{4}{x}+\frac{4}{z}+\frac{36}{z}=1$ (the whole work);
or $\frac{4}{x}+\frac{40}{z}=1$.
Multiplying equation (1) by 4 , and subtracting it from (2) we have $\frac{36}{z}=\frac{3}{4}$; whence $z=48$, and by substitution is readily found $=24$.
(19) First, $2 \mathrm{hrs} 48 \mathrm{~min} .=2 \frac{4}{5} \mathrm{hrs}$, and $4 \mathrm{hrs}, 40 \mathrm{~min} .=4 \frac{2}{3} \mathrm{hrs}$.

Let x and z represent the hours respectively in which A and B can drink it, then $\frac{1}{x}$ and $\frac{1}{z}=$ parts which each can drink in as. hour ; and $\frac{2}{x}+\frac{2}{z}=$ parts drank by both in 2 hours

$$
\begin{align*}
& \frac{2 \frac{4}{5}}{z}=\frac{14}{5 z}=\text { parts drank by B in } 2 \frac{4}{5} \text { hours } \\
& \frac{4 \frac{2}{3}}{x}=\frac{14}{3 x}=\text { parts drank by } A \text { in } 4 \frac{2}{3} \text { lours ; } \\
& \therefore \frac{2}{x}+\frac{2}{z}+\frac{14}{5 z}=1 \text { (the whole); } \tag{1}\\
& \frac{2}{x}+\frac{14}{3 x}+\frac{2}{z}=1 \tag{2}
\end{align*}
$$

By adding together the terms containing x, and those containing z,
$\frac{2}{x}+\frac{24}{5 z}=1$;
$\frac{20}{3 x}+\frac{2}{z}=1$.
By multiplying (3) by $\frac{10}{3}$ and subtracting (4) from it, we have $\frac{14}{z}=\frac{7}{3}$ whence $z=6$, and by substitution x is easily found $=10$.
(20) Let $x=$ numerator and $y=$ denominator of 1^{t} fraction, then $\frac{x}{y}=1^{n}$ fraction, and $\frac{8}{5}-\frac{x}{y}=\frac{8 y-5 x}{5 y}=2^{n d}$ fraction.
By adding the numerators together, and the denominators together, we have
$x+8 y-5 x=y+5 y$, or $2 y=4 x$, or $2 x=y$;
whence $\frac{x}{y}=\frac{1}{2}=$ the first fraction,
and $\frac{8}{5}-\frac{1}{2}=\frac{1}{1} \frac{1}{0}=$ the second fraction.
(21) In solving questions of this kind, it is convenient to denote the capacity by 1 ; it may, however, be denoted by c, the object of the question being not to find either the size of a crown or guinea, or the size (capacity) of the purse, but the ratio of the size of a crown or guinea to the size of the purse.
Let $x=$ number of crowns and $z=$ number of guineas, then $\frac{1}{x}=$ part filled by 1 crown, and $\frac{1}{z}=$ part filled by 1 guinea.
Also, $\frac{19}{x}+\frac{6}{z}=1$,
and $\frac{4}{x}+\frac{5}{z}=\frac{17}{63}$.
Multiplying equation (1) by 5 and (2) by 6 , and subtracting, we find $x=21$; then by substitution $z=63$.
22) Let $x=$ number of bushels of wheat, and $y=$ number of bushels of rye.
$\therefore 5 x+3 y=$ his money.
Observe that 7 bushels of rye will cost 21 shitlings, and 6
bushels of wheat 30 shillings. Then from the nature of the question, we have the following equations \cdot

$$
\begin{align*}
& \frac{5 x+3 y-21}{5}+7=x+y-2, \tag{1}\\
& 30+3(x+y-6)=5 x+3 y-6 . \tag{2}\\
& \text { Whence } x=9 \text { and } y=12 .
\end{align*}
$$

BIMULTANEOUS EQUATIONSOF THE FIRST DEJREE, INVOLVINGTHREEOR MORE UNKNOWN QUANTITIES.

Article 160.

(9) (3) from (2) gives $\frac{1}{x}-\frac{1}{y}=b-c$;

Sum of (1) and (4) gives $\frac{2}{x}=a+b-c$.
Whence $x=\frac{2}{a+b-c}$.
(2) from (1) gives $\frac{1}{y}-\frac{1}{z}=a-b$;

Sum of (3) and (5) gives $\frac{2}{y}=a-b+c$.
Whence $y=\frac{2}{a-b+c}$.
(1) from (3) gives $\frac{1}{z}-\frac{1}{x}=c-a$,

Sum of (2) and (6) gives $\frac{2}{z}=b+c-a$.
Whence $z=\frac{2}{b+c-a}$.
(10) Multiplying equation (1) by 3, and (2) by 2, to render the coëfficients of $\frac{1}{x}$ alike, and subtracting the former from the latter, we have
$-\frac{17}{y}+\frac{22}{z}=\frac{4}{3}$.
Multiplying equation (1) by 2 and adding the result to (3) we have $\frac{11}{y}-\frac{2}{z}=\frac{2}{3}$.

Multiolying equation (5) by 11, and adding the result to (4), we have $\frac{104}{y}=\frac{26}{3}$; whence $y=12$
(11) Multiplying equation (1) by 2 , and subtracting (2) from the result, we have $\frac{15}{4 x}-\frac{13}{3 y}=\frac{31}{216}$.
Multiplying equarion (2) by 2 , and subtracting (3) from the result, we find $-\frac{1}{3 x}+\frac{3}{y}=\frac{5}{18}$.

Multiplying equation (4) by 3 , and (5) by ${ }_{3}^{3}$, and adding and reducing, we find $x=6$; then by going back and substituting, we readily find the values of y and z.
(12) Adding the four equations together, and dividing by 2 , we find the value of $x+y+z+v$. Then subtracting from this each of the equations successively, and dividing by 2 , we get the values of x, y, x, and v.

QUESTIONS PRODUCING SIMULTANEOUS EQUA= TIONS CONTAININGTHREE OR MORE UNKNOWN QUANTITIES.

Article 161.

(1) Let x, y, and z represent the respective shares, then

$$
\begin{gather*}
x+y+z=760 \tag{I}\\
x+y-z=240 \tag{2}\\
y+z-x=360 \tag{3}
\end{gather*}
$$

Whence $x=200, y=300$, and $z=260$.
(2) Let x, y, and z represent the numbers respectively, then

$$
\begin{align*}
& x+y+z=20 ; \tag{1}\\
& x+y: y+z:: 4: 5 \text {, or } 5 x+5 y=4 y+4 z ; \tag{2}\\
& y-x: z-x:: 2: 3 \text {, or } 3 y-3 x=2 z-2 x \tag{3}
\end{align*},
$$

(3) Let x, y, z, and v represent the numbers respectively, theo

$$
\begin{align*}
& x+y+z=13, \tag{1}\\
& x+y+v=15, \tag{2}\\
& x+z+v=18, \tag{3}\\
& y+z+v=23 . \tag{4}
\end{align*}
$$

Adding the four equations together and dividing by 3 , we have $x+y+z+v=22$, from which, by subtracting equations (4), (3), (2), and (1) respectively, we find $x=2, y=4$, $z=7$, and $v=9$.
(4) Let $x=$ digit in hundred's place, $y=$ digit in ten's place, and $z=$ digit in unit's place, then $100 x+10 y+z=$ the number, and $\quad x+y+z=16$;
also $x+y: y+z:: 3: 3 \frac{3}{3}$, or $3 \frac{2}{3} x+3 \frac{2}{3} y=3 y+3 z$;
and $100 x+10 y+z+198=100 z+10 y+x$;
or $\quad 99 x+198=99 z$.
From these equations we readily find $x=5, y=4$, and $z=7$.
(5) Let $x=$ number of votes for A and $\mathrm{B}, y=$ do. for A and C , and $z=$ do. for B and C ; then

$$
\begin{align*}
& x+y+26=158, \tag{1}\\
& x+z+30=132, \tag{2}\\
& y+z+28=58 . \tag{3}
\end{align*}
$$

Whence $x=102, y=30$, and $z=0$.
(6) If x, y, and z represent the three numbers, then

$$
\begin{align*}
& \frac{1}{2} x+\frac{1}{3} y+\frac{1}{4} z=46, \tag{1}\\
& \frac{1}{3} x+\frac{1}{4} y+\frac{1}{5} z=35, \tag{2}\\
& \frac{1}{4} x+\frac{1}{5} y+\frac{1}{6} z=28 \frac{1}{3} . \tag{3}
\end{align*}
$$

By clearing these equations of fractions, the values of x, y, and \& are readily found by elimination by addition and subtraction.
(7) Let x, y, and z represent the three numbers, tuen

$$
\begin{align*}
& x+y=a, \tag{1}\\
& x+z=b, \tag{2}\\
& y+z=c . \tag{3}
\end{align*}
$$

Whence x, y, and z are readily found.
(8) Let x, y, z, and v represent the capacity of the respective casks, then

$$
\begin{align*}
& x-y=\frac{4 x}{7} \tag{1}\\
& y-z=\frac{y}{4} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& z=\frac{9 v}{16}, \tag{3}\\
& x=z+v+15 . \tag{4}\\
& \text { Whence } x=140, y=60, z=45, \text { and } v=80 .
\end{align*}
$$

(9) Let x, y, and z, represent the number of guns, goldiera and sailors, respectively, then

$$
\begin{align*}
& \frac{x}{3} \times 22+10=2 \tag{1}\\
& y+z=5(x+y)
\end{align*}
$$

Since the number slain in the engagement was one-fourth of the survivors ; therefore, $\frac{1}{5}(y+z)$ represents the slain, and ${ }_{5}^{4}(y+z)$ the survivors.

$$
\begin{equation*}
\therefore \frac{4}{5}(y+z)+5=\frac{x}{2} \times 13 \tag{3}
\end{equation*}
$$

From these equations we readily find $x=90, y=55$ and $z=670$.

GENERALIZATION.

Article 163.

(8) Representing the parts by $x-m, x+m, \frac{x}{m}$, and $m x$, we have
$x-m+x+m+\frac{x}{m}+m x=a ;$

$$
2 x+\frac{x}{m}+m x=a ;
$$

$2 m x+x+m^{2} x=m a ;$
$x\left(m^{2}+2 m+1\right)=x(m+1)^{2}=m a$.
Whence $x=\frac{m a}{(m+1)^{2}}$, from which the parts are easll found.
(9) Let $x=$ distance he may ride, then

$$
\begin{aligned}
& \frac{x}{b}=\text { time employed in riding, and } \\
& \frac{x}{c}=\text { time } \quad " \quad \text { " walking. } \\
\therefore & \frac{x}{b}+\frac{x}{c}=x ; \text { whence } x=\frac{a b c}{b+c}
\end{aligned}
$$

(10) Let $x=$ the less number, then $b x=$ the greater, since the quotient of the greater divided by the less is b.
$\therefore b x+x=a$, or $(b+1)=a$.
Whence $x=\frac{a}{b+1}=$ less, and $b x=\frac{a b}{b+1}=$ greater.
(11) Let $x=$ the number of beggars that reccived 1 cts. each, then $n-x=$ the number that received c cts each.
$\therefore b x+c(n-x)=a$.
Whence $x=\frac{a-n c}{b-c}$, and $n-x=\frac{n b-a}{b-c}$.
(12) Let $x=$ the greater part, and $n-x=$ the less, then
$\frac{x}{n-x}=q+\frac{r}{n-x}$.
Whence $x=\frac{n q+r}{1+q}$, and $n-x=\frac{n-r}{1+q}$.
13) Let x, y, and z represent the days respectivcly in which A, B, and C can perform the work.
Then, if A can do it in x days, he can do $\frac{1}{x}$ part in one day; in like manner B can do $\frac{1}{y}$ part, and C $\frac{1}{y}$ part in one day.
$\therefore \frac{1}{x}+\frac{1}{y}=\frac{1}{a}$;
$\frac{1}{x}+\frac{1}{z}=\frac{1}{b}$;
$\frac{1}{y}+\frac{1}{z}=\frac{1}{c}$.
For the method of solution see examole 9, Art. $: 60$.
(14) Let $x=$ A's share, then $\frac{x}{a}=$ expense of one ox for m months, and $\frac{x}{a} \div m=\frac{x}{m a}=$ expense of one ox fo 1 month

$$
\begin{aligned}
\therefore \frac{x}{m a} \times n b & =\frac{n b x}{m a}=B \text { 's share, and } \\
\frac{x}{m a} \times p c= & =\frac{p c x}{m a}=\text { C's share, }
\end{aligned}
$$

$\therefore x+\frac{n b x}{m a}+\frac{p c x}{m a}=\mathrm{P}$.
Whence $x=\frac{m a \mathrm{P}}{m a+n \bar{b}+p c}$, from which the shares of B and C are easily found.
(15) Let $x=$ cost of 1 lb of the mixture, then $(a+b+;) x=\operatorname{cost}$ of the whole mixture.
But $m a=$ cost of $a \mathrm{lbs}$ at m shillings per lb ,

$n b=$	$"$	b	$"$	n	$"$	$"$
$p c=$	$"$	c	$"$	c	$"$	$"$

$\therefore(a+a+c) x=m n a+n b+p c$.
Whence $x=\frac{m a+n b+p c}{a+b+c}$.
(16 Instead of representing either of the quantities to be found by a separate symbol, the simplest solution is obtained by taking x to represent the number of miles per hour the waterman goes when he rows with the current; then since he can row c miles with the current for d miles against it, we have

$$
c: d:: x: \frac{d x}{c}=\text { rate of sailing up stream. }
$$

And since the number of hours employed in sailing any given distance, is equal to the whole number of miles sailed, divided by the number of miles sailed in 1 hour therefore,
$\frac{u}{x}=$ number of hours in sailing down stream, and $a \div \frac{d x}{c}=\frac{a c}{d x}=$ number of hours in sailing up stream.
$\cdot \frac{a}{x}+\frac{a c}{d x}=b$, whence $x=\frac{a c+a d}{b d}$,
and $\frac{d x}{c}=\frac{a c+a d}{b c}$.
$a \div \frac{a c+-a d}{b d}=\frac{b d}{c+d}=$ time down;
$a \div \frac{a c+a d}{b c}=\frac{b c}{c+d}=$ time up.

It is evident that the rate of the current will be half the difference of the rates of sailing down and up; that is

$$
\frac{1}{2}\left\{\frac{a c+a d}{b d}-\frac{a c+-a d}{b c}\right\}=\frac{a\left(c^{2}-d^{2}\right)}{2 b c d} .
$$

Lastly, the rate of rowing will be the difference between the rate of sailing and the rate of the current ; that is, $\frac{a c+a d}{b d}-\frac{a\left(c^{2}-d^{2}\right)}{2 b c d}=\frac{a(c+d)^{2}}{2 b c d}$.

HEGATIVESOLUTIONB.

Article 164.

Enunclations of questions $2,3,4,5$, and 6, so that the results shall be true in an arithmetical sense.
2. What number must be subtracted from the number 30, that the remainder shall be 19? Ans. II.
3. The difference of two numbers is 9 , and their sum 25 ; required the numbers. Ans. 17 and 8.
4. What number is that whose third subtracted from its half leaves a remainder I5 ?

Ans. 90.
5. A father's age is 40 years; his son's age is 13 years; how many years since was the age of the father 4 times that of the son?

Ans. 4.
6. The triple of a certain number increased by 100 , is equal to 4 times the number diminished by 200 . Required the number. Ans. 300.

Article 169.

(1) Here we find $x=\frac{m n q}{m-n}$.
1^{n}. There will be a negauve solution when n is greater than m. $2^{n d}$. The value of x will be infinite when m is equal to n (Art. 136). $3^{\text {rd }}$. When q is 0 , and m is equal to n, there will be an indeterminate solution; that is, \boldsymbol{z} may have any value whatever.
(2) $1^{\text {at }}$. The boats will meet half way between C and L , when m is equal to n. $2^{n d}$. They will meet at C when m is $0.3^{r d}$. They will meet at L when n is 0 . $4^{\text {th }}$. 'I'hey
will meet above C when m is less than n, and the boat A runs in an opposite direction from C to $\mathrm{L} .5^{\text {th }}$. They will meet below L when m is greater than n, and the boat B runs in an opposite direction from L to C. $6^{\text {th }}$. They will never meet, if m and n have different signs and are equal to each other. $7^{7 \text { h }}$. They will sail together when a is zero, and $-m=n$, or $m=-n$.
(3) Let $x=$ the number, the
$\frac{8 x+16}{4}=2 x-7 ;$
whence $2 x+4=2 x-7$, or $11=0$.
This result is absurd, therefore the question is absurd or imressible.
(4) Let $x=A$'s age, then $x-6=B ' s$, and $x-10=C^{\prime} s$;

$$
\begin{aligned}
\therefore \frac{x}{3}+\frac{x-10}{4} & =\frac{7}{12}(x-6)+1 . \\
\text { or } 4 x+3 x-30 & =7 x-42+12 . \\
0 & =0 .
\end{aligned}
$$

Hence x may have any value whatever, thus if A is 30 years of age, B will be 24, and C 20.
(5) We shall find the same values for x and y from any two of the equations, for example, from the $1^{s t}$ and $2^{n d}, 1$ and $3^{r d}, 1^{n}$ and $4^{\text {th }}, 2^{n d}$ and $3^{r d}, 2^{n d}$ and $4^{t h}$, or $3^{r d}$ and $4^{t h}$. Hence we may take either two of the equations and the other two will be redundant.
(6) From the $1^{t x}$ and $2^{n d}$ equations we readily find $x=5$ and $y=3$. From the $1^{t t}$ and $3^{r d}, x=6 \frac{3}{7}$, and $y=2 \frac{2}{7}$. From the $1^{t h}$ and $4^{\text {th }} x=-5$ and $y=8$. Hence the equations can not all be true at the same time.

EXAMPLESINVOLVINGTHESECOND POWER OF THE UNKNOWNQUANTITX.

Article 171.

(9) First divide both members by x^{m}.
(11) Let $x=$ the number, then

$$
4\left(\frac{x}{2} \times \frac{x_{2}^{u}}{2}\right)=\frac{x}{3} \times \frac{x}{3} \times \frac{x}{3} \text {, or } x^{2}=\frac{x^{3}}{27} .
$$

Multiplying both members by 27 and dividing by x^{2}, we find $x=27$.
(12) Let $x=$ the length and $y=$ the breadth, then $x y=$ the number of square feet. From $1^{n t}$ supposition
$(x+4)(y+5)=x y+116$.
From the second supposition
$(x+5)(y+4)=x y+113$.
Performing the operations indicated, omitting $x y$ on each side, and reducing, we have
$5 x+4 y=96$;
$4 x+5 y=93$.
Whence $x=12$ and $y=9$.

INVOLUTION OR THE FORMATION OF POWERS.

Note- Most of the examples in the Formation of powers, and the Extraction of roots, being performed by direct methods of operation, which the attentive studeut will readily understand, it is not deemed necessary to give these solutions here. Those only will be given which present some peculiarity.

Article 172.

There is a theorem by means of which the cube of any binomial may be written directly, which the pupil will sometimes find useful, viz. :

Theorem.- The cube of any binomial is equal to the sutm of the cubes of the two terms, plus three times their product multiplied by the binomial, if the second term is positive, or minus three times their product multiplied by the binomial, if the second term is negative. Thus,

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=a^{3}+b^{3}+3 a b(a+b) ; \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}=a^{3}+(-b)^{3}-3 a b(a-b) ;
\end{aligned}
$$

which proves the theorem.
This theorem gives at once the results in examples 25, 27, and
28. Observe that $x \times \frac{1}{x}=1, e^{x} \times c^{-x}=e^{x} \times \frac{1}{e^{x}}=1$.
(29) Let α and $a-1$ be two consecutive numbers then $(a+1)^{2}=a^{2}+2 a+1$:

$$
\begin{aligned}
& (a)^{2}=a^{2} \\
& \text { diff. }=2 a+1=a+(a+1) .
\end{aligned}
$$

(30) Let $a-1$, u, and $a+1$, be any three consecutive numbera; then $(a-1)+a+(a+1)=3 a=$ their sum.

$$
\begin{aligned}
& (a-1)^{3}=a^{3}-3 a^{2}+3 a-1, \\
& (a)^{3}=a^{3}, \\
& (a+1)^{3}=a^{3}+3 a^{2}+3 a+1,
\end{aligned}
$$

Sum $=3 a^{3} \quad+6 a=3 a\left(a^{2}+2\right)$ whieh is evidently divisible by $3 a$.
The theorem may be proved in a similar manner by assuming $a, a+1$, and $a+2$ for the numbers.

EXTRACTION OFTHESQUAREROOT OF POLYNOMIALS.

Article 183.

(13) The terms arranged with reference to x, give

$$
49 x^{4}-\frac{14 x^{3}}{5}+\frac{1051 x^{2}}{25}-\frac{6 x}{5}+9
$$

(17)

$$
\begin{aligned}
& \begin{array}{l|l|}
1-x^{2} & 1-\frac{x^{2}}{2}-\frac{x^{4}}{8}-\frac{x^{6}}{16}-\frac{5 x^{9}}{128}-, \& \epsilon . ~
\end{array} \\
& 2-\frac{x^{2}}{2} \sqrt{-x^{2}} \\
& -x^{2}+\frac{x^{4}}{4} \\
& \left.2-x^{2}-\frac{x^{4}}{8} \right\rvert\,-x_{4}^{4} \\
& -\frac{x^{4}}{4}+\frac{x}{8}+\frac{x^{8}}{64} \\
& 2-x^{2}-\frac{x^{4}}{4}-\frac{x^{6}}{16}-\frac{x^{6}}{8}-\frac{x^{8}}{64} \\
& \frac{-\frac{x^{6}}{8}+\frac{x^{8}}{16}+\frac{x^{10}}{64}+\frac{x^{12}}{256}}{64}-\frac{5 x^{8}}{64}-\frac{x^{10}}{256} .
\end{aligned}
$$

A more elegant method of extracting the square root of $1-x^{2}$, ts by means of Indeterminate coëfficients, Art. 317; or, by the Binomial theorem, Art. 321.
(18) The operations in this example are similar to those in the preceding.

EXTRACTION OF THE CUBE ROOT OF

POLYNOMIALS.

Article 191.

(6) In solving this example let $a+1$ be considered a single quantity. It may, for example, be represented by a single letter as b.

EXTRACTIONOFTHEFOURTHROOT, SIXTH ROOT, \&G.
Article 192.

$$
\begin{aligned}
& \left\lvert\, x^{4}-2 x^{2}+3-\frac{2}{x^{2}}+\frac{1}{x^{4}}=\right.\text { sq. root. } \\
& \text { (11 } \quad x^{5}-4 x^{6}+10 x^{4}-16 x^{2}+19-\frac{16}{x^{2}}+\frac{10}{x^{4}}-x^{4}+\frac{1}{x^{9}} \\
& 2 x^{4}-2 x^{2} \mid-4 x^{6}+10 x^{4} \\
& \begin{array}{l}
-4 x^{6}+4 x^{4} \\
2 x^{4}-4 x^{2}+3 \\
\hline
\end{array} \begin{array}{l}
6 x^{4}-16 x^{2}+19 \\
6 x^{4}-12 x^{2}+9 \\
\hline
\end{array} \\
& 2 x^{4}-4 x^{2}+6-\frac{2}{x^{2}}-4 x^{2}+10-\frac{16}{x^{2}}+\frac{10}{x^{4}} \\
& -4 x^{2}+8-\frac{12}{x^{2}}+\frac{4}{x^{4}} \\
& 2 x^{4}-4 x^{2}+6-\frac{4}{x^{2}}+\frac{1}{x^{4}} \quad \overline{\left.+2-\frac{4}{x^{2}}+\frac{6}{x^{4}}-\frac{4}{x^{6}}+\frac{1}{x^{8}},{ }^{5}\right)} \\
& +2-\frac{4}{x^{2}}+\frac{6}{x^{4}}-\frac{4}{x^{8}}+\frac{1}{x^{9}}
\end{aligned}
$$

The square root of $x^{4}-2 x^{2}+3-\frac{2}{x^{2}}+\frac{1}{x^{4}}$ is now readily found to be $x^{2}-1+\frac{1}{x^{2}}$.
(12) The terms arranged with reference to the powers of a, give $a^{6}-6 a^{4}+15 a^{2}-20+\frac{15}{a^{2}}-\frac{6}{a^{4}}+\frac{1}{a^{8}}$. The square rout of this, found as in the preceding example, is $a^{3}-3 a$ $+\frac{3}{a}-\frac{1}{a^{3}}$; and the cube root of this, found by the rule in Art. 191, is $a-\frac{1}{a}$.

It is proper to remark that both the preceding examples may be solved without using fractions in the operation, by multiplying all the terms of the polynomial in example 11 , by x^{8}, and writing x^{8} beneath it, and after extracting the fourth root of both terms, dividing by x^{2}. We should thus find $x^{8}-2 x^{6}+3 x^{4}-2 x^{2}+1$ for the first square root of the numerator, and $x^{4}-x^{2}+1$ for the second. Similarly, in example 12, we must multiply all the terms by a^{6}. It is recommended to the pupil to solve these examples by both methods.

RADICALS.

Note.- As most of the examples in Radicals are performed by direct methods of operation which the careful student can scarcely fail to apply properly, it is not deemed necessary to present all their solutious.

REDUCTION OF RADICALS.

In the reduction of fractional radicals of the second degree there is a principle with which it is well pupils should be acquainted, as it both facilitates and simplifies the operations. This principle is, that if a number coniains a factor that is a perfect square, the number may be made a perfect square by multiplying is by the other factor. Thus, if the denominator of a fraction is $a^{2} b$ it may be made a square by multiplying it by b. For example,

$$
\sqrt{\frac{5}{72}}=\sqrt{\frac{5}{36 \times 2}}=\sqrt{\frac{5 \times 2}{36 \times 2^{2}}}=\sqrt{\frac{1}{36 \times 4} \times 10}=\frac{1}{6 \times 2} \sqrt{10}=\frac{1}{12} \sqrt{10}
$$

If the denominator contains no factor that is a perfect square, ${ }^{\circ} t$ can only be rendered a perfect square by multiplying both terms by itself. Thus,

$$
\sqrt{\frac{5}{11}}=\sqrt{\frac{5}{11} \times \frac{1}{1} \frac{1}{1}}=\sqrt{\frac{1}{1} \frac{1}{2} \times 55}=\frac{1}{11} \sqrt{55} .
$$

Article 199.

$$
\begin{equation*}
\sqrt{\left(x^{2}-y^{2}\right)(x+y)}=\sqrt{(x+y)(x-y)(x+y)}=(x+y) \sqrt{x-y} . \tag{3}
\end{equation*}
$$

Article 200.

In order to separate a quantity into two factors, one of whicls is a perfect power of any given degree, it is necessary to ascersain if the quantity contains a numerical factor that is a perfect power of that degree. To do this we must see if the quantity is divisible by any of the perfect.powers of that degree. Thus, if the radical is of the third degree the perfect powers to be tried as divisors are $8,27,64,125,216,343,512,729, \& c$. If the radcal is of the fourth degree, the divisors are $16,81,256,625, \& \mathrm{cc}$. If the radical is of the fifth degree, the divisors are $32=2^{5}$. $243=3^{5}, 1024=4^{5}$, and so on.
(4) $\sqrt[5]{\frac{1}{2}}=\sqrt[3]{\frac{1}{2} \times \frac{4}{4}}=\sqrt[3]{\frac{1}{8} \times 4}=\frac{1}{2} \sqrt[8]{4}$;

$$
\begin{align*}
& \sqrt[3]{\frac{3}{4}}=\sqrt[8]{\frac{1}{8} \times 6}=\frac{1}{2} \sqrt[3]{6} ; \sqrt[3]{\frac{1}{6}}=\sqrt[3]{\frac{1}{2}_{1}^{6} \times 36}=\frac{1}{6} \sqrt[3]{36} ; \\
& \sqrt[3]{\frac{5}{9}}=\sqrt[3]{\frac{1}{2} \times 15}=\frac{1}{3} \sqrt[3]{15} ; \sqrt[3]{\frac{7}{6}}=\sqrt[8]{\frac{1}{8} \times 7}=\frac{1}{2} \sqrt[3]{7} ; \\
& \sqrt[3]{\frac{9}{25}}=\sqrt[3]{\frac{9}{25} \times \frac{5}{5}}=\sqrt[3]{\frac{1}{2} \frac{1}{2} \times 45}=\frac{1}{5} \sqrt[3]{45} . \\
& \sqrt[4]{\frac{2}{3}}=\sqrt[4]{\frac{2}{3} \times \frac{3^{3}}{3^{3}}}=\sqrt[1]{\frac{1}{3^{4}} \times 2 \times 3^{3}}=\frac{1}{3} \sqrt[4]{2 \times 3^{3}}=\frac{1}{3} \sqrt[4]{\sqrt{2} 4} . \tag{6}
\end{align*}
$$

(7) $\sqrt[5]{64}=\sqrt[5]{32 \times 2}=2 \sqrt[5]{2} ; \sqrt[5]{729 a^{6}}=\sqrt[5]{243 a^{5} \times 3 a}=3 a \sqrt[5]{3 a^{\prime}}$

$$
\begin{aligned}
& \sqrt[6]{\frac{1}{2}}=\sqrt[6]{\frac{1}{2} \times 2^{2^{5}}}=\sqrt[6]{\frac{1}{2^{6}} \times 2^{5}}=\frac{1}{2} \sqrt[6]{2^{5}}=\frac{1}{2} \sqrt[6]{32} ; \\
& \sqrt[6]{\frac{2}{3}}=\sqrt[6]{\frac{2}{3} \times 3^{3^{5}}}=\sqrt[6]{\frac{1}{3^{6}} \times 2 \times 3^{5}}=\frac{1}{3} \sqrt[6]{2 \times 3^{5}}=\frac{1}{3} \sqrt[6]{486} ; \\
& \sqrt[5]{\frac{3}{4}}=\sqrt[5]{\frac{3}{2^{2}}}=\sqrt[5]{\frac{3}{2^{2}} \times \frac{2^{3}}{2^{3}}}=\sqrt[5]{\frac{1}{3^{5}} \times 3 \times 2^{3}}=\frac{1}{2} \sqrt[5]{24}
\end{aligned}
$$

$$
\text { or thus } \sqrt[5]{\frac{3}{4}}=\sqrt[5]{\frac{3}{4} \times 4^{4}}=\sqrt[5]{\frac{1}{4^{5}} \times 3 \times 4^{4}}=\frac{1}{4} \sqrt[5]{768}
$$

The first method has the advantage of giving the result in the most, simple form.

ADI:TIONANDSUBTRACTION OFRADICALB。

Article 204.

(14) $2 \sqrt[3]{\frac{1}{4}}=2 \sqrt[3]{\frac{1}{8} \times 2}=\sqrt[3]{2} ; 8 \sqrt[3]{\frac{1}{3} 2}=8 \sqrt{{ }_{6}^{4} \times 2}=2 \sqrt[9]{2}$.
\therefore Sum $=3 \sqrt[3]{2}$.

$$
\begin{align*}
& \sqrt[3]{\frac{2}{3}}=\sqrt{9 \times \frac{2}{3}}=\sqrt{6} ; 7 \sqrt{\frac{27}{50}}=7 \sqrt{\frac{9 \times 3}{25 \times 2} \times \frac{2}{2}}=7 \sqrt{\frac{9}{100} \times 6} \tag{17}\\
& =\frac{21}{10} \sqrt{6} ;-\sqrt{54}=-\sqrt{9 \times 6}=-3 \sqrt{6} ; \\
& \therefore \sqrt{6}+\frac{2}{1} \frac{1}{0} \sqrt{6}-3 \sqrt{6}=\left(1+\frac{21}{10}-3\right) \sqrt{6}=\frac{1}{10} \sqrt{6} .
\end{align*}
$$

(18) $-\frac{1}{2} \sqrt{12}=-\frac{1}{2} \sqrt{4 \times 3}=-\sqrt{3} ; 4 \sqrt{27}=4 \sqrt{9 \times 3}=12 \sqrt{3}$;
$-2 \sqrt{\frac{3}{16}}=-2 \sqrt{\frac{1}{16} \times 3}=-\frac{1}{2} \sqrt{3}$.
$\therefore 2 \sqrt{3}-\sqrt{3}+12 \sqrt{3}-\frac{1}{2} \sqrt{3}=\left(2-1+12-\frac{1}{2}\right) \sqrt{3}$
$=\frac{25}{2} \sqrt{3}$.
(20) $\sqrt[4]{16}=2, \sqrt[3]{81}=\sqrt[9]{27 \times 3}=3 \sqrt[3]{3},-\sqrt[2]{-512}=-\sqrt{-8^{1}}$
$=8, \sqrt[3]{192}=\sqrt[3]{64 \times 3}=4 \sqrt[3]{3},-7 \sqrt[6]{9}=-7 \sqrt[3]{3} ;$
$\cdots 2+3 \sqrt[3]{5}+8+4 \sqrt[3]{3}-7 \sqrt[3]{3}=10$.
(21) $8\binom{3}{4}^{\frac{1}{2}}=8 \sqrt{\frac{1}{4} \times 3}=4 \sqrt{3}, \frac{1}{2} \times 12^{\frac{1}{2}}=\frac{1}{2} \sqrt{4 \times 3}=\sqrt{ } 3$,
$-\frac{4}{3} \times 27^{\frac{1}{2}}=-\frac{4}{3} \sqrt{9 \times 3}=-4 \sqrt{3},-2\left(C_{16}^{3}\right)^{\frac{1}{2}}=-2 \sqrt{\frac{1}{16} \times 7}$
$=-\frac{1}{2} \sqrt{3}$;
$\therefore 4 \sqrt{3}+\sqrt{3}-4 \sqrt{3}-\frac{1}{2} \sqrt{3}=\left(4+1-4-\frac{1}{2}\right) \sqrt{3}=\frac{1}{2} \sqrt{3}$
23)

$$
\sqrt{\frac{a b^{3}}{c^{2}}}=\sqrt{\frac{b^{2}}{c^{2}} \times a b}=-\sqrt{a \bar{a}} ;
$$

$\left.\frac{1}{2 c} \sqrt{ }\left(a^{3} b-4 a^{2} b^{2}+4 a b^{3}\right)=\frac{1}{2 c} \sqrt{a b\left(a^{2}-4 a b+4 b^{2}\right.}\right)=\frac{a-b}{2 c} \sqrt{a \bar{a} b^{\prime}}$ $\frac{b}{c} \sqrt{a b}+\frac{a-b}{2 c} \sqrt{a b}=\frac{a}{2 c} \sqrt{a b}$.

14UTIPLICATION AND DIVISIONOFRADICAL O

Article 205.

(9) $\sqrt{3}=\sqrt[6]{3^{3}}, \sqrt[3]{2}=\sqrt[6]{2^{2}} ; \sqrt[6]{3^{3}} \times \sqrt[6]{2^{2}}=\sqrt[6]{3^{3} \times 2^{2}}=\sqrt[6]{108}$.
(10) $\sqrt[3]{b}=\sqrt[12]{b^{4}}, \sqrt[4]{a}=\sqrt[12]{a^{3}} ; 3 \sqrt[12]{b^{4}} \times 4 \sqrt[12]{a^{3}}=12 \sqrt[12]{a^{3} b^{4}}$.
(11) $\sqrt[2]{2}=\sqrt[12]{2^{6}}, \sqrt[3]{3}=\sqrt[12]{3^{4}}, \sqrt[4]{5}=\sqrt[12]{5^{3}}$;
$\sqrt[12]{2^{6}} \times \sqrt[12]{3^{4}} \times \sqrt[12]{5^{3}}=\sqrt[12]{2^{6}} \times 3^{4} \times 5^{3}=\sqrt[12]{64 \times 81 \times 125}$ $=\sqrt[12]{648000}$.
(12) $\sqrt{2} \times \sqrt[3]{3}=\sqrt[6]{2^{3}} \times \sqrt[6]{3^{2}}=\sqrt[6]{2^{3} \times 3^{2}}=\sqrt[12]{2^{6} \times 3^{4}}$;
$\sqrt[4]{\frac{1}{2}} \times \sqrt[3]{\frac{1}{3}}=\sqrt[12]{\frac{1}{\frac{1}{3}^{3}} \times \sqrt[12]{\frac{1}{3^{4}}}}=\sqrt[12]{\frac{1}{2^{3} \times 3^{4}}} ;$
$\sqrt[12]{2^{6} \times 3^{4}} \times \sqrt[12]{\frac{1}{2^{3} \times 3^{4}}}=\sqrt[12]{2^{3}}=\sqrt[4]{2}$.
Or thus, $\sqrt{2} \times \sqrt[3]{3} \times \sqrt[4]{\frac{1}{2}} \times \sqrt[3]{\frac{1}{3}}=\sqrt[4]{2^{2}} \times \sqrt[4]{\frac{1}{2}} \times \sqrt[3]{3} \times \sqrt[9]{\frac{1}{3}}$ $=\sqrt[4]{2}$, Since $2^{2} \times \frac{1}{2}=2$, and $3 \times \frac{1}{3}=1$.
(13) $\sqrt[n]{x^{2}}=\sqrt[2 n]{x^{4}}, \sqrt[3 n]{x^{3}}=\sqrt[n]{x}=\sqrt[2 n]{x^{2}}$
$\sqrt[2 n]{x} \times \sqrt[2 n]{x^{4}} \times \sqrt[2 n]{x^{2}}=\sqrt[2 n]{x \times x^{4} \times x^{2}}=\sqrt[2 n]{x^{7}}$.
(18) $\sqrt[6]{72} \div \sqrt{2}=\sqrt[6]{72} \div \sqrt[6]{8}=\sqrt[6]{9}=\sqrt[3]{\sqrt{9}}=\sqrt[3]{3}$.
(19) $4 \sqrt[3]{9} \div 2 \sqrt{3}=4 \sqrt[6]{9^{2}} \div 2 \sqrt[6]{3^{3}}=2 \sqrt[6]{3}$.
'20) $20 \sqrt[6]{200} \div 4 \sqrt{2}=20 \sqrt[6]{200} \div 4 \sqrt[6]{8}=5 \sqrt[6]{25}=5 \sqrt[9]{5}$.
(21) $\sqrt[6]{72} \div \sqrt[3]{3}=\sqrt[6]{72} \div \sqrt[6]{9}=\sqrt[6]{8}=\sqrt{\sqrt[3]{8}}=\sqrt{2}$.
(22) $\sqrt[5]{4} \div \frac{1}{2} \sqrt[5]{6}=2 \sqrt[3]{\frac{2}{3}}=2 \sqrt[3]{\frac{2}{3} \times \frac{9}{9}}=2 \sqrt[3]{\frac{1}{27} \times 18}=\frac{2}{3} \sqrt[3]{18}$.

Or thus, $\frac{1}{2} \sqrt[3]{6}=\sqrt[3]{\frac{1}{8} \times 6}=\sqrt[3]{\frac{3}{4}} ; \sqrt[3]{4} \div \sqrt[3]{\frac{3}{4}}=\sqrt[3]{\frac{16}{3}}$

$$
=\sqrt[3]{\frac{8 \times 2}{3} \times \frac{9}{9}}=\sqrt[3]{\frac{8}{27} \times 18}=\frac{2}{3} \sqrt[3]{18}
$$

(23) $\sqrt{\frac{b}{a}}=\sqrt[4]{\frac{b^{2}}{a^{3}}} ; \sqrt[4]{\frac{b^{2}}{a^{2}}} \div \sqrt[4]{\frac{a}{b}}=\sqrt[4]{\frac{b^{2}}{a^{2}} \times \frac{a}{b}}=\sqrt[4]{\frac{b}{a}}$.
(24) $\frac{1}{2} \sqrt{\frac{1}{2}}=\frac{1}{2} \sqrt{\frac{1}{4} \times 2}=\frac{1}{4} \sqrt{2}$.
$\sqrt{\overline{2}}+3 \sqrt{\frac{1}{2}}=\sqrt{2}+3 \sqrt{\frac{1}{4} \times 2}=\sqrt{2}+\frac{3}{2} \sqrt{2}=\frac{5}{2} \sqrt{2}$
$\frac{1}{4} \sqrt{2} \div \frac{1}{2} \sqrt{2}=\frac{1}{4} \times \frac{2}{5}=\frac{1}{1} 0$.
(25) $3+\sqrt{5}$
$\frac{2-\sqrt{5}}{6+2 \sqrt{5}}$
$\frac{-3 \sqrt{5}-5}{1-\sqrt{5} .}$
(26) $\sqrt{2}+1$
$\frac{\sqrt{2}-1}{2+\sqrt{2}}$

$$
-\sqrt{2}-1
$$

$$
2--1=1 .
$$

(27) $11 \sqrt{2}=4 \sqrt{15}$
$\frac{\sqrt{6}+\sqrt{5}}{11 \sqrt{12}-4 \sqrt{90}}$
$\frac{+11 \sqrt{10}-4 \sqrt{75}}{11 \sqrt{12}-\sqrt{10}-4 \sqrt{75}}$
$=22 \sqrt{3}-\sqrt{10}-20 \sqrt{3}$
$=2 \sqrt{3}-\sqrt{10}$
Observe that $-4 \sqrt{90}=-12 \sqrt{10}$
(28) $\sqrt{2}+\sqrt{3}$.
$\frac{\sqrt{2}+\sqrt{3} .}{2+\sqrt{6} .}$
$\frac{+\sqrt{6}+3}{5+2 \sqrt{6}}$
$\frac{5+2 \sqrt{6}}{25+10 \sqrt{6}}$
$\frac{+10 \sqrt{6}+4 \times 6}{49+20 \sqrt{6}}$
29) $3 \sqrt{4+6 \sqrt{2}} \times 5 \sqrt{2}=15 \sqrt{4 \times 2+12 \sqrt{2}}$

$$
=15 \sqrt{4 \times 2+4 \times 3 \sqrt{2}}=15 \times 2 \sqrt{2+3 \sqrt{2}}=3 c \sqrt{2+3 \sqrt{2}}
$$

10) $\sqrt[3]{12+\sqrt{19}} \times \sqrt[3]{12-\sqrt{19}}=\sqrt[3]{\{(12+\sqrt{19})(12--\sqrt{19})\}}$

$$
=\sqrt[9]{ }\{144-19\}=\sqrt[3]{144-19}=\sqrt[3]{125}=5 .
$$

(33) $2 \sqrt{8}=4 \sqrt{2}, \sqrt{72}=6 \sqrt{2}, 5 \sqrt{20}=10 \sqrt{2}$;

$$
\begin{aligned}
& (2 \sqrt{8}+3 \sqrt{5}-7 \sqrt{2})=3 \sqrt{5}-3 \sqrt{2} ; \\
& (\sqrt{72}-5 \sqrt{20}-2 \sqrt{2})=\frac{4 \sqrt{2}-10 \sqrt{5}}{12 \sqrt{10}-24} \\
& \frac{-150+30 \sqrt{10}}{42 \sqrt{10}-174 . \quad \text { Ans. }}
\end{aligned}
$$

Article 206.

(4) Multiply both terms by 4^{2} or 16 .
(5) $\frac{8-5 \sqrt{2}}{3-2 \sqrt{2}}=\frac{8-5 \sqrt{2}}{3-2 \sqrt{2}} \times \frac{3+2 \sqrt{2}}{3+2 \sqrt{2}}=\frac{4+\sqrt{2}}{9-8}=4+\sqrt{2}$.
(6) $\quad \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\frac{5+2 \sqrt{6}}{3-2}=5+2 \sqrt{6}$.
(7) $\frac{\sqrt{3}+1}{2-\sqrt{3}}=\frac{\sqrt{3}+1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{5+3 \sqrt{3}}{4-3}=5+3 \sqrt{3}$.
(8) $\frac{1-\sqrt{5}}{3+\sqrt{5}}=\frac{1-\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}=\frac{8-4 \sqrt{5}}{9-5}=2-\sqrt{5}$.
(9) $\frac{3 \sqrt{5}-2 \sqrt{2}}{2 \sqrt{5}-\sqrt{18}} \times \frac{2 \sqrt{5}+\sqrt{18}}{2 \sqrt{5}+\sqrt{18}}=\frac{18+5 \sqrt{10}}{20-18}=9+\frac{5}{2} \sqrt{ } 10$
(10) Multiply both terms by $\sqrt{2}+\sqrt{3}+\sqrt{5}$, and the fraction becomes $\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2 \sqrt{6}}$; then multiply both terms by $\sqrt{6}$ and it becomes $\frac{2 \sqrt{3}+3 \sqrt{2}+\sqrt{30}}{12}$.
(11)

$$
\begin{aligned}
& \frac{3+4 \sqrt{3}}{\sqrt{\overline{6}}+\sqrt{2}-\sqrt{5}} \times \frac{\sqrt{6}+\sqrt{2}+\sqrt{5}}{\sqrt{6}+\sqrt{2}+\sqrt{5}} \\
& =\frac{(3+4 \sqrt{3})(\sqrt{6}+\sqrt{2}+\sqrt{5})}{3+4 \sqrt{3}}=\sqrt{6}+\sqrt{2}+\sqrt{5} . \quad \text { Ans. } \\
& 10
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{x+\sqrt{x^{2}-1}} \times \frac{x-\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}=\frac{x-\sqrt{x^{2}-1}}{x^{2}-\left(x^{2}-1\right)}=x-\sqrt{x^{2}-1} ; \tag{12}\\
& \frac{1}{x-\sqrt{x^{2}-1}} \times \frac{x+\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=\frac{x+\sqrt{x^{2}-1}}{x^{2}-\left(x^{2}-1\right)}=x+\sqrt{x^{2}-1} \\
& \text { Sum }=2 x . \text { Ans. }
\end{align*}
$$

(13) Multiply both terms by $\sqrt{ }(x+a)+\sqrt{ }(x-a)$ and the frace tion becomes $\frac{(x+a)+2 \sqrt{ }\left(x^{2}-a^{2}\right)+(x-a)}{(x+a)-(x-a)}$ $=\frac{x+\sqrt{ }\left(x^{2}-a^{2}\right)}{a}$.

$$
\begin{gather*}
\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}} \times \frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}=x^{2}+\sqrt{x^{4}-} \tag{14}\\
\frac{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}} \times \frac{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}=x^{2}-\sqrt{x^{4}-} \\
\text { Sum }=2 x^{2} .
\end{gather*}
$$

(16) $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}=.267919+$.

$$
\begin{equation*}
\frac{1+\sqrt{2}}{2-\sqrt{2}} \times \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{4+3 \sqrt{2}}{4-2}=2+\frac{3}{2} \sqrt{2}=4.12132+ \tag{17}
\end{equation*}
$$

(18) $\frac{\sqrt{20}+\sqrt{12}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{16+2 \sqrt{60}}{2}$

$$
=8+2 \sqrt{15}=15.745966+
$$

IMAGINARY, or IMPOSSIBLE QUANTITIEB.

Article 210.

(3) $(a \sqrt{-1})^{3}=(a \sqrt{-1})^{2} \times(a \sqrt{-1})=-a^{2} \times a \sqrt{-1}$ $=-a^{3} \sqrt{-1}$.

$$
(a \sqrt{-1})^{4}=(a \sqrt{-1})^{2} \times(a \sqrt{-1})^{2}=\left(-a^{2}\right) \times\left(-a^{2}\right)=a^{4}
$$

(4) $(2 \sqrt{-3}) \times(3 \sqrt{-2})=(2 \sqrt{3} \sqrt{-1}) \times(3 \sqrt{2} \sqrt{-1})$
$=-6 \sqrt{6}$.
(5) $-\frac{1}{2}+\frac{1}{2} \sqrt{-3}=-1+\sqrt{2}$
$-1+\sqrt{-3}$
$-1+\sqrt{-3}$
$1-\sqrt{-3}$
$-1-\sqrt{-3}$
$-1-\sqrt{-3}$
$1+\sqrt{-3}$
$\frac{-\sqrt{-3}-3}{-2-2 \sqrt{-3}}$
$+\sqrt{-3}+(-3)$
$-2+2 \sqrt{-3}$
$\frac{-1-\sqrt{-3}}{2-2 \sqrt{-3}}$
$\frac{-2 \sqrt{-3}-2(-3)}{2}+6=8 ;$
$\frac{+2 \sqrt{-3}-2(-3)}{2}+6=8 ;$
$2^{3}=8$, and $\frac{8}{8}=1 . \quad$ Ans.
$\frac{8}{8}=1$. Ans.
(6) $6 \sqrt{-3}=6 \sqrt{3} \sqrt{-1} ; 2 \sqrt{-4}=2 \sqrt{4} \sqrt{-1}=4 \sqrt{-1}$;
$6 \sqrt{3} \sqrt{-1} \div 4 \sqrt{-1}=\frac{6 \sqrt{3} \sqrt{-1}}{4 \sqrt{-1}}=\frac{3}{2} \sqrt{3}$.
(7) $\frac{1+\sqrt{-1}}{1-\sqrt{-1}} \times \frac{1+\sqrt{-1}}{1+\sqrt{-1}}=\frac{1+2 \sqrt{-1}-1}{1-(-1)}=\frac{2 \sqrt{-1}}{2}=\sqrt{-1}$.
(8) $(x+a \sqrt{-1}) \times(x-a \sqrt{-1})=x^{2}-a^{2}(-1)=x^{2}+a^{2}$;
$(x+a) \times(x-a)=x^{2}-a^{2} ;\left(x^{2}+a^{2}\right)\left(x^{2}-a^{2}\right)=x^{4}-a^{4}$.
(9) Multiply the quantities together.

MULTIPLICATION AND DIVISION OF QUANTITYES WITHFRACTIONALEXPONENTS.

Article 213.

(4) $a^{\frac{2}{3}}+a^{\frac{1}{5}} b^{\frac{1}{3}}+b^{\frac{2}{3}}$
(5) $x^{\frac{1}{4}} y+y^{\frac{2}{3}}$
$\frac{a^{\frac{1}{3}}-b^{\frac{1}{3}}}{a+a^{\frac{2}{3}} b^{\frac{1}{3}}+a^{\frac{1}{3}} b^{\frac{2}{3}}}$
$\frac{x^{\frac{1}{4}}-y^{-\frac{1}{3}}}{x^{\frac{1}{2}} y+x^{\frac{1}{4}} y^{\frac{2}{3}}}$
$\frac{-a^{\frac{2}{3}} b^{\frac{1}{3}}-a^{\frac{1}{3}} b^{\frac{2}{3}}-b}{a-b \text { Ans. }}$

$$
\frac{-x^{\frac{1}{4}} y^{\frac{2}{3}}-y^{\frac{1}{3}}}{x^{\frac{1}{2}} y-y^{\frac{1}{3}} \cdot \quad \text { Ans. }}
$$

16) $(a+b)^{\frac{1}{m}} \times(a-b)^{\frac{1}{n}}=[(a+b)(a-b)]^{\frac{1}{n}}=\left(a^{2}-b^{2}\right)^{\frac{1}{n}}$;

$$
\begin{aligned}
& (a+b)^{\frac{1}{n}} \times(a-b)^{\frac{1}{n}}=\left[(a+b)(a-b)^{-1}=\left(a^{2}-b^{2}\right)^{\frac{1}{4}} ;\right. \\
& \left(a^{2}-b^{2}\right)^{\frac{1}{m}} \times\left(a^{2}-b^{2}\right)^{\frac{1}{n}}=\left(a^{2}-b^{2}\right)^{\frac{1}{m}}+\frac{1}{n}=\left(a^{2}-b^{2}\right)^{\frac{m+m}{m n}} .
\end{aligned}
$$

(7) Observe that $\frac{2}{3}-\frac{1}{4}=\frac{5}{12} ; \frac{3}{m}-\frac{2}{n}=\frac{3 n-2 m}{m n}$.
(8) $\left.a^{\frac{9}{2}}-b^{\frac{9}{4}} \right\rvert\, a^{4}-b^{\frac{1}{4}}$
$\frac{a^{\frac{3}{2}}-a^{\frac{1}{2}} b^{\frac{1}{4}}}{+a^{\frac{1}{2}} b^{\frac{1}{4}}} \quad \frac{a^{\frac{1}{2}}+a^{\frac{1}{4}} b^{\frac{1}{2}}+b^{\frac{1}{2}} . \text { Ans. }}{}$
$\frac{a^{\frac{1}{2}} b^{\frac{1}{4}}-a^{\frac{1}{4}} b^{\frac{1}{2}}}{a^{\frac{1}{4}} b^{\frac{1}{2}}-b^{\frac{3^{\frac{2}{2}}}{2}}}$
$\xrightarrow{a^{\frac{1}{2}} b^{\frac{1}{2}}-b^{\frac{3}{4}}}$.
(9)

$$
\begin{aligned}
& a-b^{2} \quad \frac{\left\lvert\, a^{\frac{3}{4}}+a^{\frac{1}{2}} b^{\frac{1}{2}}+a^{\frac{1}{4}} b+b^{\frac{3}{2}}\right.}{a^{\frac{3}{3}} a^{\frac{3}{4}} b^{\frac{1}{2}}+a^{\frac{1}{2}}+a^{\frac{1}{4}} b^{\frac{3}{2}}} \\
& \frac{-a^{\frac{3}{4}} b^{\frac{1}{2}}-a^{\frac{1}{2}} b-a^{\frac{1}{4}} b^{\frac{3}{2}}}{2}-b^{2} \\
& -a^{\frac{3}{4}} b^{\frac{1}{2}}-a^{\frac{1}{2}} b-a^{\frac{1}{4}} b^{\frac{3}{2}}-b^{2}
\end{aligned} .
$$

POWERS AND ROOTS OF QUARTITIES WITE FRACTIONALEXPONENTS.

Auticle 215.

(5)

$$
\begin{aligned}
& a^{\frac{1}{3}} x^{-1}+a^{-\frac{1}{3}} x \quad a^{0}=1, x^{0}=1, \text { (Art. 32). } \\
& \frac{a^{\frac{1}{3}} x+a^{-\frac{1}{3}} x}{a^{\frac{2}{3}} x^{-2}+a^{0} x^{0}} \\
& \frac{+a^{0} x^{0}+a^{-\frac{2}{3}} x^{2}}{a^{\frac{2}{3}} x^{-2}+2+a^{-\frac{2}{3}} x^{2}} \\
& \frac{a^{\frac{1}{3}} x^{-1}+a^{-\frac{1}{3}} x}{a x^{-3}+2 a^{\frac{1}{3}} x^{-1}-+a^{-\frac{1}{3}} x} \\
& \frac{+a^{\frac{1}{5}} x^{1}+2 a^{-\frac{5}{3}} x+a^{-1} x^{3}}{a x^{-1}+3 a^{\frac{1}{3}} x^{-1}+3 a^{-\frac{1}{3}} x+a^{-1} x^{3}}
\end{aligned}
$$

(6) $\left[3(5)^{\frac{1}{5}}\right]^{\frac{1}{2}}=3^{\frac{1}{2}} \times 5^{\frac{1}{t}}=3^{\frac{3}{6}} \times 5^{\frac{1}{t}}=\left(3^{3} \times 5\right)^{\frac{1}{6}}=(135)^{\frac{1}{d}}$.
(8)

$$
5 x^{3}-4 x(5 c x)^{\frac{1}{2}}+4 c \quad \quad 5^{\frac{3}{3}} x^{\frac{3}{2}}-2 c^{\frac{1}{2}} . \quad \text { Ans. }
$$

$$
\frac{2\left(5^{\frac{1}{2}} x^{\frac{3}{2}}\right)-\frac{5 x^{3}}{2 c^{\frac{1}{2}}-4 x(5 c x)^{\frac{1}{y}}+4 c}}{-\frac{4 x(5 c x)^{\frac{1}{2}}+4 c .}{}}
$$

(9) Separating the third term into its parts, and arranging the terms according to the ascending powers of a, we have

$$
1-\frac{3}{2} a^{\frac{1}{2}}+\frac{41}{16} a-\frac{3 a^{\frac{3}{2}}}{2}+a^{2} 1-\frac{3 a^{\frac{1}{2}}}{4}+a=\text { sq. root }
$$

$$
2-\frac{3 a^{\frac{1}{4}}}{4}--_{2}^{3} a^{\frac{1}{2}}+\frac{41}{16} a
$$

$\frac{-\frac{3}{2} a^{\frac{1}{2}}+\frac{9 a}{16}}{2-\frac{3 a^{\frac{1}{2}}}{2}+a \left\lvert\, 2 a-\frac{3 a^{\frac{3}{2}}}{2}+a^{2}\right.}$

$$
2 a-\frac{3 a^{\frac{3}{2}}}{2}+a^{2}
$$

$$
\begin{gather*}
\frac{\frac{1}{8} a^{3}}{\left.\frac{3}{4} a^{2}-3 a b^{\frac{1}{2}}+4 b \right\rvert\,}-\frac{3}{2} a^{2} b^{\frac{1}{2}}+6 a b-8 b^{\frac{3}{2}} \tag{10}\\
-\frac{3}{2} a^{2} b^{\frac{1}{2}}+6 a b-8 b^{\frac{3}{2}}
\end{gather*}
$$

EQUATIONS CONTAINING RADICAL G.

Article 216.

(4) Transpose 3 and then square both sides.
(5) Square both sides, transpose 1, and square again.
(6) Square both sides, omit x on each side, divide both sides by $2 a$, transpose \sqrt{x}, or $\frac{a}{2}$ and square. The answer is either $\frac{(a-1)^{2}}{4}$ or $\frac{(1-a)^{2}}{4}$, the two being equal to each other.
(7) Square both sides, transpose $2 x-3 a+2 x$, divide by 2 and square again. •
(8) Square both sides and transpose 13 ; square again and transpose 7; square again and transpose 3; whence $\sqrt{x}=1$ and $x=1$.
(9) Multiply both sides by the first term, transpose $2+x$ and square both sides.
(10) Multiply both sides by $\sqrt{\bar{x}}$, transpose $\sqrt{\bar{a}}$, then square both sides, and omit x^{2} on each side.
(11) Transpose the second term to the left member and square both sides, omit x on each side, transpose the known quantities to the left side and square again.
$a \sqrt{x}+b \sqrt{x}-c \sqrt{x}=d$, or $(a+b-c) \sqrt{x}=d$; whence $\sqrt{\bar{x}}=\frac{d}{(a+b-c)}$, and $x=\frac{d^{2}}{(a+b-c)^{2}}$.
(13) Multiply both sides by $x \sqrt{x}$ to clear the equation of fractions, then divide by x and we have $(1-a) x=1$. The equation may also be cleared of fractions by multiplying both sides by x.
(14) Square both sides, omit a^{2} on each side, then divide by x and square again.
(15) Since $x-4=(\sqrt{x}+2)(\sqrt{x}-2)$ the first member becomes $\sqrt{x}-2$; then by transposing we have $6=5 \frac{1}{2} \sqrt{x}$, or $11 \sqrt{x}=12$, whence $x=\frac{14}{12} \frac{4}{1}$.
16) Since $x-a=(\sqrt{x}+\sqrt{a})(\sqrt{x}-\sqrt{a})$ the first member becomes $\sqrt{x}-\sqrt{a}$; then by clearing of fractions and reducing we find $\sqrt{x}=4 \sqrt{a}$, whence $x=16 a$.
(17) Since $3 x-1=(\sqrt{3 x}+1)(\sqrt{3 x}-1)$, the first member becomes $\sqrt{3} x-1$; then by clearing of fractions, reducing and squaring, x is found $=3$.
(18) $\sqrt{4 a+x}=2 \sqrt{b+x}-\sqrt{x}$,

$$
4 a+x=4 b+4 x-4 \sqrt{b x+x^{2}}+x, \text { by squaring, }
$$

$\sqrt{b x+x^{2}}=(b-a)+x$, by transposing and reducing,
$b x+x^{2}=(b-a)^{2}+2(b-a) x+x^{2}$, by squaring,
$(2 a-b) x=(b-a)^{2}$, by transposing,
$x=\frac{(b-a)^{2}}{2 a-b}$.
(19) $\sqrt{\frac{b^{-}}{a+x}}+\sqrt{\frac{c}{a-x}}=\sqrt[4]{\frac{4 b c}{a^{2}-x^{2}}}$.
$\frac{b}{a+x}+2 \sqrt{\frac{b c}{a^{2}-x^{2}}}+\frac{c}{a-x}=\sqrt{\frac{4 b c}{a^{2}-x^{2}}}$ by squaring;
But $2 \sqrt{\frac{b c}{a^{2}-x^{2}}}=\sqrt{\frac{4 b c}{a^{2}-x^{2}}}$;
$\therefore \frac{b}{a+x}+\frac{c}{a-x}=0$, whence $x=\frac{a(b+c)}{b-c}$.
(20) Multiplying both terms of the first member by the numerator and then clearing of fractions and transposing, we have

$$
\begin{aligned}
2 \sqrt{x^{2}+a x} & =a(c-1)-2 x \\
4 x^{2}+4 a x & =a^{2}(c-1)^{2}-4 a x(c-1)+4 x^{2} \text { by squaring, } \\
4 a c x & =a^{2}(c-1)^{2} \text { by reducing and transposing; } \\
\therefore x & =\frac{a(c-1)^{2}}{4 c} .
\end{aligned}
$$

(21)

$$
\sqrt{\sqrt{x}+3}-\sqrt{\sqrt{x}-3}=\sqrt{2 \sqrt{x}}
$$

Squaring both sides, and observing that $\sqrt{\sqrt{x}+3}$ multe plied by $\sqrt{\sqrt{x-3}}$ produces $\sqrt{x-9}$, we have $\sqrt{x}+3-2 \sqrt{x-9}+\sqrt{x}-3=2 \sqrt{x}$.
Reducing, and omitting $2 \sqrt{x}$ on each side, we have.
$-2 \sqrt{x-9}=0$, and $4(x-9)=0$ by squaring, whence $x=9$.
(22) Square both members, omit $\frac{1}{a^{2}}$ on each side, square again and omit $\frac{1}{x^{4}}$ on both sides ; then multiply both members by x^{2}, clear the equation of fractions and the value of x is readily found.
23) Square both members, omit equal quantities on each side, place all the terms not under the radical on the right side and divide by 2 , and we have
$\sqrt{ }\left\{\left(1-a^{2}\right)^{2}+2 x\left(1+3 a^{2}\right)+\left(1-a^{2}\right) x^{2}\right\}=\left(a^{2}-1\right)-x ;$
square both sides, and we have

$$
\left(1-a^{2}\right)^{2}+2 x\left(1+3 a^{2}\right)+\left(1-a^{2}\right) x^{2}=\left(a^{2}-1\right)^{2}-2 x\left(a^{2}-1\right)+x^{2} .
$$

The square of $1-a^{2}$ is the same as the square of $a^{2}-1$, omitting these and x^{2} on each side, and dividing by x and transposing we have $a^{2} x=8 a^{2}$;
whence $x=8$.

EXAMPLESININEQUALITIES.

Note. The subject of inequalities, though interesting and highly important in itself, is not much used in the subsequent parts of Algebra The last eight examplci, that is, from the 10th to the close, may be regarded as so many independent algebraic theorems, the study of a mav be omitted by all except the higher class of students.

Article 223.

) Squaring both quantities, subtracting 19 from each, an. dividing by 2 , we have
$\sqrt{70}\rangle$, or $<1+3 \sqrt{6}$;
$70>$, or $<1+6 \sqrt{6}+54$, by squaring;
$15\rangle$, or $<6 \sqrt{6}$, by subtracting 55 from each member
$5>$, or $<2 \sqrt{6}$, by dividing by 3 ;
$25>24$, by squaring ;
hence $\sqrt{5}+\sqrt{14}$ is greater than $\sqrt{3}+3 \sqrt{2}$.
(8) Multiplying both members of the first comparison by 12, to clear it of fractions, and reducing, we get $x<6$

Treating the second comparison in the same manner, wo fina $x>4$; hence if x is a whole number and is greater than 4 and less than 6 , it must be 5 .
19)

$2 x+7$ not	>19,	$3 x-5$ not	<13,
or $2 x$ not	>12,	$3 x$ not	<18,
x not	>6.	x not	<6.

Hence if x is neither less nor greater than 6 , it must be 6 .
(10) In example 6, page 175 of the Algebra, it is shown that $a^{2}+b^{2}>2 a b$.
Let $a=n$, and $b=1$, then by substitution
$n^{2}+1>2 n$,
$n^{2}-n+1>n$, by subtracting n from each side
$n^{3}+1>n(n+1)$ by multiplying both sides by $n+1$, or $n^{3}+1>n^{2}+n$.
(11) Referring again to example 6 we have $a^{2}+b^{2}>2 a b$, $\frac{a^{2}}{a a^{2}}+\frac{b^{2}}{a b}>2$, by dividing by $a b$. $\frac{a}{b}+\frac{b}{a}>2$, by reducing.
(12) If $x>y$ then $\sqrt{x}>\sqrt{y}$, and $\sqrt{x y}>\sqrt{ } y \times \sqrt{ } y$, or y,

$$
\begin{gathered}
\sqrt{x y}>y, \\
2 \sqrt{x y}>2 y
\end{gathered}
$$

\therefore (Λ rt. 22z) $-2 y>-2 \sqrt{x y}$, add $x+y$ to each member

$$
\begin{aligned}
\text { then } x-y>x-2 \sqrt{x y}+y, \\
\text { or } x-y>(\sqrt{x}-\sqrt{y})^{2} .
\end{aligned}
$$

(13) Referring again to example 6, we have $a^{2}+b^{2}>2 a l$, subtract $a b$ from each member;
$a^{2}-a b+b^{2}>a b$, multiply each side by $a+b$, we have $a^{3}+b^{3}>a^{2} b+a b^{2}$, divide each side by $a^{2} b^{2}$, $\frac{a^{3}}{a^{2} b^{2}}+\frac{b^{3}}{a^{2} b^{2}}>\frac{a^{2} b}{a^{2} b^{2}}+\frac{a b^{2}}{a^{2} b^{2}}$, or reducing, $\frac{a}{b^{2}}+\frac{b}{a^{2}}>\frac{1}{b}+\frac{1}{a}$.
(14) From question 6 , we have

$$
\begin{array}{r}
\quad a^{2}+b^{2}>2 a b, \\
\text { alsi } a^{2}+c^{2}>2 a c, \\
\text { und } a^{2}+2^{2}>2 b c,
\end{array}
$$

from which, by adding together the sorresponding mem bers, and dividing each member by 2 , we have
$a^{2}+b^{2}+c^{2}>a b+a c+b c$.
$\frac{a^{3}+b^{3}}{a^{2}+b^{2}}>$, or $<\frac{a^{2}+b^{2}}{a+b}$; maltiply both members by $a+b$,
$\frac{a^{2}+a b^{3}+a^{3} b+b^{4}}{a^{2}+b^{2}}>$, or $<a^{2}+b^{2}$; multiply both member by $a^{2}+b^{2}$,
$\left.a^{4}+a b^{3}+a^{3} b+b^{4}\right\rangle$, or $<a^{4}+2 a^{2} b^{2}+b^{4}$;
Subtracting $a^{4}+b^{4}$ from each member we have $a b^{3}+a^{3} b>$, or $<2 a^{2} b^{2}$; divide by $a b$, $b^{2}+a^{2}>$, or $<2 a b$.
But it has already been proved in example 6 that $a^{2}+b^{3}$
is $>2 a b$, when a is not equal to b; therefore,
$\frac{a^{3}+b^{3}}{a^{2}+b^{2}}>\frac{a^{2}+b^{2}}{a+b}$.
Or thus, $a^{2}+b^{2}>2 a b$, multiply botll sides by $a b$, $a^{3} b+a b^{3}>2 a^{2} b^{2}$, ald $a^{4}+-b^{4}$ to each member,
$a^{4}+a^{3} b+a b^{3}+b^{4}>a^{4}+2 a^{2} b^{2}+b^{4} ;$
dividing each member by $a+b$, and then by $a^{2}+b^{2}$, we have $\frac{a^{3}+b^{3}}{a^{2}+b^{2}}>\frac{a^{2}+b^{2}}{a+b}$, which establishes the proposition.

$$
\begin{align*}
& x^{2}=a^{2}+b^{2}, \text { and } y^{2}=c^{2}+d^{2} ; \tag{16}\\
& x^{2} y^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2} \\
& (a c+b d)^{2}=\cdot a^{2} c^{2}+2 a b c d+b^{2} d^{2}, \\
& x^{2} y^{2}-(a c+b d)^{2}=a^{2} d^{2}-2 a b c d+b^{2} c^{2}=(a d \\
& \text { but } x^{2} y^{2}-(a c+b d)^{2}=\{x y+(a c+b d)\}\{x, \\
& \text { divide each member by } x y+(a c+b d), \text { a } \\
& x y-(a c+b d)=\frac{(a d-b c)^{2}}{x y+a c+b d}
\end{align*}
$$

$$
x^{2} y^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}
$$

$$
x^{2} y^{2}-(a c+b d)^{2}=a^{2} d^{2}-2 a b c d+b^{2} c^{2}=(a d-b c)^{2}
$$

$$
\text { but } x^{2} y^{2}-(a c+b d)^{2}=\{x y+(a c+b d)\}\{x y-(a c+b d)\}
$$

$$
\text { divide each member by } x y+(a c+b d) \text {, and we have }
$$

But the second member of this equation is necessarily positive since the numerator is a square and the denominator positive hence the first momber is positive ; that is, $x y>a c+b d$.
(17) $a^{2}>a^{3}-(b-c)^{2}$, since $(b-c)^{2}$ is neressarily posituve,
$>(a+b-c)(a+c-b)$ by factoring ;
$b^{2}>b^{2}-(a-c)^{2}$,
$>(a+b-c)(b+c-a) ;$
$c^{2}>c^{2}-(a-b)^{2}$,
$>(a+c-b)(b+c-a)$.
Multiplying together the corresponding members of these inequalities, $a^{2} b^{2} c^{2}>(a+b-c)^{2}(a+c-b)^{2}(b+c-a)^{2}$; extracting the square root of both members we have $a b c>(a+b-c)(a+c-b)(b+c-a)$.

EQUATIONS OFTHESECOND DEGREE.

INCOMPLETE EQUATIONS.

Article 228.

(12) Multiply both members by $\sqrt{a^{2}+x^{2}}$, transpose $a^{2}+x^{2}$ and square again.
(13) Multiply both members by $b x$, transpose $a b$ and then square each member.
(14) Multiply both members oy the product of the denominators and reduce.
(15) Multiplying both members by the denominator of the first transposing and factoring, we have

$$
\begin{aligned}
a(1-b) & =(b+1) \sqrt{a^{2}-x^{2}} ; \\
a^{2}(1-b)^{2} & =(b+1)^{2}\left(a^{2}-x^{2}\right), \text { by squaring, } \\
(b+1)^{2} x^{2} & =4 a^{2} b, \text { by transposing and reducing } ; \\
\therefore x^{2} & =\frac{4 u^{2} b}{(b+1)^{2}}, \text { and } x= \pm \frac{2 a \sqrt{b}}{b+1} .
\end{aligned}
$$

QUESTIONS PRODUCINGINCOMPLETE ?UAI VE OFTHE SECOND DEGREE

Article 229.

(2) Let $x=$ the number, then
$x^{2}-17=130-2 x^{2}$.
Whence $x=7$.
(3) Let $x=$ the number, then
$(10-x) x=10\left(x-6 \frac{2}{5}\right)$.
Whence $x=8$.
(4) Let $x=$ the number, then
$30-\frac{1}{3} x^{2}=\frac{1}{4} x^{2}+9$.
Whence $x=6$.
(5) To avoid fractions let $9 x=$ the greater, then $\frac{2}{3}$ of $9 x=2 x$ and $9 x-2 x=7 x$, will represent the less;
$\therefore(9 x)^{2}-(7 x)^{2}$, or $81 x^{2}-49 x^{2}=123$.
Whence $x=2, \therefore 9 x=18$, and $7 x=14$.
(7) Let $x=$ the greater number, then $14-x=$ the less;
then $\frac{x}{14-x}: \frac{14-x}{x}:: 16: 9$;
whence $\frac{9 x}{14-x}=\frac{16(14-x)}{x}$; clearing of fractions

$$
\begin{aligned}
& 9 x^{2}=16(14-x)^{2} \text {; extracting the square root } \\
& 3 x=4(14-x) \text {; }
\end{aligned}
$$

(8) Let $x=$ the number, then
$(20+x)(20-x)=319$.
Whence $x=9$.
(9) Let $x=$ the greater, then $\frac{126}{x}=$ the less, and
$x \div \frac{126}{x}=x \times \frac{x}{126}=\frac{x^{2}}{126}=3 \frac{1}{2}$.
Whence $x^{2}=441 ; \therefore x=21$ and $\frac{126}{x}=6$.
10) Let $x=$ one of the numbers, then $\frac{p}{x}=$ the other, and
$x \div \frac{p}{x}=x \times \frac{x}{p}=\frac{x^{2}}{p}=q$.
Whence $x=\sqrt{p q} ; \frac{p}{x}=\frac{p}{\sqrt{p q}}=\sqrt{\frac{p}{q}}$.

EQUATIONSOFTHESECOND DEGREE. 125
(11) Let $x=$ one of the numbers, then its square is x^{2}, and the square of the other is $370-x^{2}$.
$\therefore x^{2}-\left(370-x^{2}\right)=208$.
Whence $x=17$, and $370-x^{2}=370-289=81$.
\cdot the other $=\sqrt{81}=9$.
(1-) Let $x=$ one of the numbers, then its square $=x^{2}$, and the struare of the other is $c-x^{2}$;
$\therefore x^{2}-\left(c-x^{2}\right)=d$.
$2 x^{2}=c+d$,
$4 x^{2}=2(c-1 d)$,
$2 x=\sqrt{2(c+d)}$
$x=\frac{1}{2} \sqrt{2(c+c)}$
$\sqrt{c-x^{2}}=\sqrt{c-1(c+d)}=\sqrt{!(c-d)}=\frac{1}{2} \sqrt{2(c-d)}$.
(13) Let $x=$ the sum, then $\frac{5 x}{100}=$ interest for 1 year, and $\frac{1}{4}$ of $\frac{5 x}{100}=\frac{5 x}{400}=$ interest for 3 months, or $\frac{1}{4}$ of a vear

$$
\begin{aligned}
\therefore x \times \frac{5 x}{400} & =720, \text { or } \frac{5 x^{3}}{400}=720 ; \\
5 x^{2} & =720 \times 400, \\
x^{2} & =144 \times 400, \\
x & =12 \times 20=240 .
\end{aligned}
$$

(14) Let $x=$ the first, then $\frac{a}{x}=$ the second, and $\frac{b}{x}=$ the third $\therefore \frac{a^{2}}{x^{2}}+\frac{l^{2}}{x^{2}}=c$; whence $x=\sqrt{ }\left(\frac{a^{2}+b^{2}}{c}\right)$ $\left.a \div \sqrt{ }\left(\frac{a^{2}+b^{2}}{c}\right)=a \sqrt{\left(\frac{c}{a^{2}+b^{2}}\right.}\right) ;$ and $b \div \sqrt{ }\left(\frac{a^{2}+b^{2}}{c}\right)$ $\left.=b \sqrt{\left(\frac{c}{a^{2}+b^{2}}\right.}\right)$.
(17) Let $x=$ number of drawers, then $x \times x=x^{3}$ the number of divisions, and $x^{2} \times 4 x=4 x^{3}=5324$.
When ce $x^{3}=1331$, and $x=11$.
(18) The solution of this question involves a knowledge of two elementary principles of Natural Philosophy, with. which the student should be rendered familiar by simple illustrations.

1st. In uniform motion, the space divided by the time as equal to the velocity or rate of moving.
2nd. In uniform motion, the space divided by the velocity is equal to the time.
Thus, if a man travels 80 miles in $\mathbf{4}$ days, his rate of traveling (velocity) is 20 miles per day. Or, if a man travels 100 miles at the rate of 20 miles a day, the time of traveling is 5 days.

Let $x=$ the distance B traveled, then

$$
x+18=\quad \text { " } \quad \text { A " . }
$$

Then since the distance traveled, divided by the number of days, gives the number of miles traveled in one day, or the rate of traveling, we have

$$
\begin{aligned}
& \frac{x}{15 \cdot 3}, \text { or } \frac{4 x}{63}=\text { A's rate of traveling, and } \\
& \frac{x+18}{28}=\text { B's rate }
\end{aligned}
$$

But the distance traveled, divided by the rate of traveling, gives the tume, therefore

$$
\begin{gathered}
(x+18) \div \frac{4 x}{63}=\frac{63(x+18)}{4 x}=\text { time A traveled, and } \\
x \div \frac{x+18}{28}=\frac{28 x}{x+18}=\text {, B }
\end{gathered}
$$

But since they both traveled the same time we have
$\frac{63(x+18)}{4 x}=\frac{28 x}{x+18}$.
Divide each side by 7 to reduce to lower terms,
$\frac{9(x+18)}{4 x}=\frac{4 x}{x+18}$.
Multiplying by $4 x$ and $x+18$, and indicating the operations, we have
${ }^{0}(x+18)^{2}=16 x^{2} ;$
Extracting tuse square root of both members,
$3(x+18)=4 x$.
Whence $x=54$, and $x+18=72$;
and $54+72=126$, the required dintance.

EQUATIONSOFTHESECOND DEGREE, 127
(19) The solution of this question involves princifles analogous io the preceding.
Let $x=$ the number of days, then $x-4=$ days A worked, and $x-7=$ days B worked.
Also $\frac{75}{x-4}=A^{\prime}$'s daily wages, and $\frac{48}{x-7}=\mathrm{B}$'s daily wages.
If B had played only 4 days he would have worked $x-4$ days, and would have received
$\left(\frac{48}{x-7}\right)(x-4)$ shillings.
If A had played 7 days he would have worked $x-7$ days, and would have received
$\left(\frac{75}{x-4}\right)(x-7)$ shillings. But by the question each would have received the same sum, therefore, $\left(\frac{75}{x-4}\right)(x-7)=\left(\frac{48}{x-7}\right)(x-4)$.
Multiplying each side by $x-4$ and $x-7$ to clear the equation of fractions, and indicating the mult plication, we have $75(x-7)^{2}=48(x-4)^{2}$;
dividing by 3 to reduce it to lower terms
$25(x-7)^{2}=16(x-4)^{2}$;
extracting the square root of both members,
$5(x-7)=4(x-4)$.
Whence $x=19$.
20) Let $\frac{1}{x}=$ the part of the wine drawn each time, then $\frac{1}{x}$ of 1 (the whole) is $\frac{1}{x}=$ the part drawn at the $1^{s t}$ draught, and $1-\frac{1}{x}=\frac{x-1}{x}=$ the part remaining after the $1^{s t}$ draught.
$\frac{x-1}{x}-\frac{1}{x}$ of $\frac{x-1}{x}=\frac{x(x-1)}{x^{2}}-\frac{(x-1)}{x^{2}}=\frac{(x-1)(x-1)}{x^{2}}$
$=\frac{(x-1)^{2}}{x^{2}}=$ part left after $2^{n d}$ draught.
$\frac{(x-1)^{2}}{x^{2}}-{ }_{x}^{1}$ of $\frac{(x-1)^{2}}{x^{2}}=\frac{x(x-1)^{2}}{x^{3}}-\frac{(x-1)^{2}}{x^{3}}=\frac{(x--1)(x-1)^{2}}{x}$
$=\frac{(x-1)^{3}}{x^{3}}=$ part left after $3^{x d}$ draught.
$\frac{(x-1)^{3}}{x^{3}}-\frac{1}{x}$ of $\frac{(x-1)^{3}}{x^{3}}=\frac{x(x-1)^{3}}{x^{4}}-\frac{(x-1)^{3}}{x^{4}}=\frac{(x-1)(x-1)^{2}}{x^{4}}$
$=\frac{(x-1)^{4}}{x^{4}}=$ part left after $4^{\text {in }}$ draught
But by the question there were 81 gallons of wine left after the $4^{\text {th }}$ draught, or $\frac{81}{256}$ of the quantity at the begin. ning,
$\therefore \frac{(x-1)^{4}}{x^{4}}=\frac{81}{256}$,
$\frac{x-1}{x}=\frac{3}{4}$, by extracting the $4^{\text {th }}$ root.
Whence $4 x-4=3 x$, or $x=4$, and $\frac{1}{x}=\frac{1}{4}=$
the part of the wine drawn at each draught.
$\frac{1}{4}$ of $256=64$ gallons drawn at $1^{s t}$ draught ;
$256-64=192$, and $\frac{1}{4}$ of $192=48$ gallons at $2^{\text {nd }}$ draught ; $192-48=144$, and $\frac{1}{4}$ of $144=36$ gallons at $3^{\text {rd }}$ draught ;
$144-36=108$, and $\frac{1}{4}$ of $108=27$ gallons at $4^{\text {th }}$ draught.
Another solution.
Let $x=$ the number of gallons of wine drawn at 1^{n} draught, and let $256=a$ for the sake of simplicity.
Then $\frac{x}{a}=$ the part of the whole wine drawn at $1^{s t}$ draught and $1-\frac{x}{a}=\frac{a-x}{a}=$ part left.
$\frac{x}{a}$ of $\frac{a-x}{a}=\frac{x(a-x)}{a^{2}}=$ part drawn at $2^{\text {nd }}$ draught,
and $\frac{a-x}{a}-\frac{x(a-x)}{a^{2}}=\frac{a(a-x)-x(a-x)}{a^{2}}==\frac{(a-x)(a-x)}{a^{2}}$
$=\frac{(a-x)^{2}}{a^{2}}=$ part left after $2^{n d}$ draught.
By proceeding as in the previous solution, we find $\frac{(a-x)^{4}}{a^{4}}=$ part of the whole wine left after the $4^{\text {th }}$ draught. $\therefore \frac{(a-x)^{4}}{a^{4}}=\frac{81}{256}$;
$\frac{a-x}{a}=\frac{3}{4}$, wnence $x=\frac{1}{4} a=64$ from which the other draughts are easily found.

COMPLETE EQUATIONSOFITHESEUONDDEGRER

Article 231.

(31) Multiplying by x and transposing, we have
$x^{2}-\frac{4}{\sqrt{3}} x=-1 ;$
$x^{2}-\frac{4}{\sqrt{3}} x+\frac{4}{3}=-1+\frac{4}{3}=\frac{1}{3}$, by completing the square $x-\frac{2}{\sqrt{3}}= \pm \frac{1}{\sqrt{3}}$;
$x=\frac{2}{\sqrt{3}} \pm \frac{1}{\sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}$, or $\frac{1}{\sqrt{3}}=\frac{1}{3} \sqrt{3}$.
(32) Multiplying both terms of the fractions in the left mein. ber by x, we have
$\frac{x^{2}+1}{x^{2}-1}+\frac{x+1}{x-1}=\frac{13}{4}$; multiplying both terms again by $x^{2}-1$, $x^{2}+1+x^{2}+2 x+1={ }^{13}{ }^{3} x^{2}-{ }_{4}^{13}$; transposing and reducing $x^{2}-\frac{8}{5} x=\frac{21}{5}$.
Whence $x=3$, or $-\frac{7}{5}$.
(35) Transposing and dividing by c, we have
$x^{2}-\frac{2 a}{c} x=-\frac{a^{2}-b^{2}}{c^{2}}$, completing the square $x^{2}-\frac{2 a}{c} x+\frac{a^{2}}{c^{2}}=\frac{a^{2}}{c^{2}}-\frac{a^{2}-b^{2}}{c^{2}}=\frac{b^{2}}{c^{2}}$; whence $x-\frac{a}{c}= \pm \frac{b}{c}$; or $x=\frac{a \pm b}{c}$.
(36) Transposing $a b$ and completing the square, we ave $x^{2}-(a+b) x+\frac{(a+b)^{2}}{4}=-a b+\frac{(a+b)^{2}}{4}=\frac{(a-b)^{2}}{4}$. Whence $x=\frac{a+b}{2} \pm \frac{a-b}{2}=a$ or b.
(37) Dividing by $a-b$, transposing and completing the square
we have $x^{2}-\frac{a+b}{a-b} x+\frac{(a+b)^{2}}{4(a-b)^{2}}=\frac{a^{2}-6 a b+9 b^{2}}{4(a-b)^{2}}$.
Whence $x=\frac{a+b}{2(a-b)} \pm \frac{a-3 b}{2(a-b)}=1$, or $\frac{2 b}{a-b}$.
(38) Transposing $n p$, dividing by $m q$ and completing the square we have $x^{2}-\frac{m n-p q}{m q} x+\frac{(m n-p q)^{2}}{4 m^{2} q^{2}}=\frac{(m n+p q)^{2}}{4 m^{2} q^{2}}$.
Whence $x=\frac{m n-p q}{2 m q} \pm \frac{m n+p q}{2 m q}=\frac{n}{q}$, or $-\frac{p}{m}$.
(39) Observing that x^{-1} is the same as $\frac{1}{x}$, clearing of fractions by multiplying by $a x$, and completing the square, we have $x^{2}-a c x+\frac{a^{2} c^{2}}{4}=\frac{a^{2} c^{2}-4 a b}{4}$.
Whence $x=\frac{a c \pm \sqrt{ }\left(a^{2} c^{2}-4 a b\right)}{2}$.
(40) First, $\frac{1}{\left(a b^{2}\right)^{-\frac{1}{2}}+\left(a^{2} b\right)^{-\frac{1}{2}}}=\frac{1}{\frac{1}{\left(a b^{2}\right)^{\frac{1}{2}}}+\frac{1}{\left(a^{2} b\right)^{\frac{1}{2}}}}=\frac{1}{\frac{1}{a^{\frac{1}{2}} b}+-\frac{1}{a b^{\frac{t}{4}}}}$;
multiplying both terms of this fraction by $a b$, it becomes $\frac{a b}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}$; the equation then becomes
$\frac{x^{2}}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}-\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right) x=\frac{a b}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}$.
Multiplying soth members of this equation by $a^{\frac{1}{2}}+b^{\frac{1}{2}}$ it becomes
$x^{2}-(a-b) x=a b$.
Whence $x=a$, or - b
(41) Dividing both sides $\mathrm{y}--a c$, transposing, and completing the square, we have
$x^{2}-\frac{a d-b c}{a c} x+\frac{(a d-b c)^{2}}{4 a^{2} c^{2}}=\frac{(a d+h c)^{2}}{4 a^{2} c^{2}}$.
Whence $x=\frac{a d-b c}{2 a c} \pm \frac{a d+b c}{2 a c}=\frac{d}{c}$, or $-\frac{b}{a}$.
(42) Square both members, and then multiply botlı sides by $x+12$.
(43) Square both members, omit the terms which destroy each other, transpose a, and-square again; the equation will then be free from radicals, and the value of x is casily found.
(44 Multiplying both members first by $4+\sqrt{ } x$ and then by \sqrt{x}, we have
$\sqrt{4 x^{2}}+2 \sqrt{x}=16-x$, or, since $\sqrt{4 x^{2}}=2 x$
$2 \sqrt{x}=16-3 x$, $4 x=256-96 x+9 x^{2}$.
Whence $x=4$, or $\frac{64}{9}$.
The first value verifies the equation when $\sqrt{ } x$ is taken plus, and the second when it is taken minus.
(45) Dividing each side by the square root of x, and observing that $\sqrt{x^{2}}=x$, we have
$x-2=\sqrt{x}$, or
$x^{2}-4 x+4=x$, by squaring.
Whence $x^{2}-5 x=-4$, and $x=4$ or 1 .
The first vaiue verifies the equation when \sqrt{x} is taken poss tively, and the second when it is taken negatively
(46) Squaring both sides we have
$x+a+x+b-2 \sqrt{ }\left[x^{2}+(a+b) x+a b\right]=2 x ;$ omitting $2 x$ on each side, transposing $a+b$ and squaring again, we have $4 x^{2}+4(a+b) x+4 a b=(a+b)^{2}$; from which by transposing and reducing, we find

$$
x^{2}+(a+b) x=\frac{(a-b)^{2}}{4} .
$$

Whence $x^{2}+(a+b) x+\frac{(a+b)^{2}}{4}=\frac{(a+b)^{2}+(a-b)^{2}}{4}$
$=\frac{2 a^{2}+2 b^{2}}{4} ;$
$x=-\frac{a+b}{2}- \pm \frac{1}{2} \sqrt{\sqrt{a^{2}+2 b^{2}}}$.
(47) Transposing the second term, squaring, and omittiug -2abcx on each side, we have
$\left(x^{2}+c^{2}\right) a b=\left(a^{2}+b^{2}\right) c x$; transposing and dividing bv
$x^{2}-\frac{\left(a^{2}+b^{2}\right) c}{a b} x=-c^{2}$;
$x^{2}-\frac{\left(a^{2}+b^{2}\right) c}{a b} x+\frac{\left.\left(a^{2}+b^{2}\right)^{2}\right)^{2}}{4 a^{2} b^{2}}=\frac{\left(a^{2}-b^{2}\right) c^{2}}{4 a^{2} b^{2}} ;$
$x=\frac{\left(a^{2}+b^{2}\right) c}{2 a b} \pm \frac{\left(a^{2}-b^{2}\right) c}{2 a b}=\frac{a c}{b}$, or $\frac{b c}{a}$.
A nother solution :
Let $\sqrt{x}=z$, then $x=z^{2}$; transposing $-c \sqrt{a b}$, dividing by $\sqrt{a b}$, and substituting z^{2} for x, and z for \sqrt{x}, we have
$z^{2}-\frac{(a-b) \sqrt{c}}{\sqrt{a b}} z+\frac{(a-b)^{2} c}{4 a b}=\frac{(a-b)^{2} c}{4 a b}+c=\frac{(a+b)^{2} c}{4 a b}$.
Whence $z=\frac{(a-b) \sqrt{c}}{2 \sqrt{a b}} \pm \frac{(a+b) \sqrt{c}}{2 \sqrt{a b}}$

$$
=\frac{2 a \sqrt{c}}{2 \sqrt{c b}}=\sqrt{\frac{a c}{b}} \text {, or } \frac{-2 h \sqrt{c}}{2 \sqrt{c b}}=\sqrt{\frac{1 c c}{a}} \text {; }
$$

$\therefore \sqrt{x}=\sqrt{\frac{a c}{b}}$, or $\sqrt{\frac{l c}{a}}$, and $x=\frac{a c}{b}$, or $\frac{h c}{a}$.
(48) Multiplying both sides by $\sqrt{a+x}$, we heve
$a+x+\sqrt{a^{2}-x^{2}}=\frac{12 a}{5}$,
$\sqrt{a^{2}-x^{2}}=\frac{7 a}{5}-x$, by transposing
$a^{2}-x^{2}=\frac{49 a^{2}}{25}-\frac{14 d}{5} x+x^{2}$, by squaring
$x^{2}-\frac{7 a}{5} x=-\frac{12 a^{2}}{25}$, by reducieg.
Whence $x=\frac{4 a}{5}$, or $\frac{3 a}{5}$.

EQUATIONS OFTHESECOND DEGREE. 133
-ROBIEMS PRODUCING COMPLETEEQUATIONS OFTHESECOND DEGREE

Article 233.

(5) Let $x=$ one of the numbers, then $20-x=$ the other, and $x(20-x)=36$.
Whence $x=2$ or 18 , therefore $20-x=18$ or 2 .
(6) Let $x=$ one part, then $15-x=$ the other, and
$x(15-x): x^{2}+(15-x)^{2}:: 2: 5$;
$\therefore 4 x^{2}-60 x+450=75 x-5 x^{2}$,
reducing $x^{2}-15 x=-50$.
Whence $x=10$ or 5 , and $15-x=5$ or 10 .
(7) Let $x=$ the number, then
$x(10-x)=21$.
Whence $x=7$ or 3 .
(8) Let $x=$ the less part, then $24-x=$ the greater, and $x(24-x)=35(24-x-x)$, reducing $x^{2}-94 x=-840$.
Whence $x=10$ or 84 , the first of which is evidently only admissible ; therefore, the parts are 10 and $24-10=14$.
(9) Denoting the square roots of the parts by x, and $26-x$, we have $x^{2}+(26-x)^{2}=346$, reducing $x^{2}-26 x=-165$. Whence $x=15$ or ${ }^{*} 1$, and $26-x=11$ or 15 .
(10) Let $x=$ the square root of the number, then $x^{2}=$ the number, and
$x^{2}+x=132$.
Whence $x=11$, or -12 , and $x^{2}=121$, or 144 .
The last number is the answer to the question "What number diminished by its square root gives 132?"
(11) Let $x=$ the square root of the number, then $x^{2}=t / 10$ number, and $x^{2}-x=48 \frac{3}{1}$.
Whence $x=7 \frac{1}{2}$, or $-6 \frac{1}{2}$, and $x^{2}=56 \frac{1}{4}$ or $42 \frac{1}{4}$.

The last number is the answer to the question "What number added to its square root gives 483_{4}^{3}
(12 Let $x=$ one of the numbers, then $41-x=$ the other, and $x^{2}+(41-x)^{2}=901$.
Whence $x=15$, or 26 ; and $41-x=26$, or 15 .
(13) Let $x=$ the less number, then $x+8=$ the greater, and $x^{2}+(x+8)^{2}=544$.
Whence $x=12$, or -20 ; and $x+8=20$, or -12;
hence the two numbers are 12 and 20 .
(14) Let $x=$ the first cost, then $x=$ per cent. of gain, and
$x \times \frac{x}{100}=\frac{x^{2}}{100}=$ gain .
$\therefore x+\frac{x^{3}}{100}=2400$.
Whence $x=20$.
(15) Let $x=$ the number of miles B traveled per hour, then $x+\frac{1}{4}=$ the number of milos A traveled per hour, then, also, $\frac{39}{x+1}$ and $\frac{39}{x}=$ the hours respectively which A and B traveled.
$\therefore \frac{39}{x+\frac{1}{4}}+1=\frac{39}{x}$;
Whence $x=3$, and $x+\frac{1}{4}=3 \frac{1}{4}$.
(16) Let $x=$ number to whom B gave, then $x+40=$ numine to whom A gave, then
$\frac{1200}{x+40}=$ what A gave to each, and
$\frac{1200}{x}=\quad$ " \quad B \quad;
$\therefore \frac{1200}{x+40}+5=\frac{1200}{x}$.
Whence $x=80$, and $x+40=120$.
(17) Let $x=$ number of miles B traveled per day, then
$x+8=$ " " A " " aad
$1 x=$ number of days each traveled;

E\&UATIONSOF THESECOND DEGREL. 135
$\therefore x \times \frac{1}{2} x+(x+8){ }_{2}^{1} x=320$, or
$x^{2}+4 x=320$.
Whence $x=16$, and $x+8=24$.
(18) Let $x=$ the distance in miles from C to D, then $\frac{x}{19}=$ number of miles B traveled per day, also
$\frac{x}{19}=$ number of days B traveled, then
$32+7 \times \frac{x}{19}=$ whole number of miles A traveled, and
$\frac{x}{19} \times \frac{x}{19}=\frac{x^{2}}{361}=$ number of miles B traveled.
$\therefore 32+\frac{7 x}{19}+\frac{x^{2}}{361}=x$.
Clearing of fractions and transposing
$x^{2}-228 x=-11552$.
Whence $x=76$, or 152 .
(19) Let $x=$ the number bought, then
$\frac{240}{x}=$ number of collars each cost, and, since $240+59$
$=299, \frac{299}{x-3}=$ " " " sold for ;
$\therefore \frac{299}{x-3}-\frac{240}{x}=8$, reducing
$8 x^{2}-83 x=720$.
$-\quad$ Whence $x=16$.
(20) Let $x=$ one of the numbers, then $100-x=$ the oner; then $x(100-x)=x^{2}-(100-x)^{2}$, reducing
$100 x-x^{2}=-10000+200 x$, or
$x^{2}+100 x=10000$.
Whence $x=61.803+$, and. $100-x=38.197$, neai. y.
Or by subtracting x^{2} from the square of $100-x$, and reducing we have the equation $x^{2}-300 x=-10000$.

Whence $x-38.197$ nearly.
(21) Since each received back $\$ 450$, they both received $\$ 900$ and the whole gain was $\$ 900-500=\$ 400$.

Let $x=$ A's stock, then $500-x=\mathrm{B}$'s stock.
x dollars for 5 months is the same as $5 x$ dollars for 1 month.
($500-x$) dollars for 2 months, is the same as $2(500-x$) $=(1000-2 x)$ dollars for 1 month.
Hence the gain, \$400, is to be divided into two parta having the same ratio to each other as $5 x$ and $1000-2 x$. But $5 x+(1000-2 x)$ $=3 x+1000$, therefore the parts of the gain are $\frac{5 x}{3 x+1000}$ anc $\frac{1000-2 x}{3 x+1000}$, the sum of which is 1 , the whole gain.
\therefore A's gain is $\frac{5 x}{3 x+1000}$ of $400=\frac{2000 x}{3 x+1000}$;
B's gain is $\frac{1000-2 x}{3 x+1000}$ of $400=\frac{400000-800 x}{3 x+1000}$.
But A's gain $=450-x$.
$\therefore \frac{2000 x}{3 x+1000}=450-x$.
Whence $x=200$, A's stock, and $500-x=300$, B's stuck.
(22) Let $x=$ first part of 11 , then $11-x=$ the second;
also, $\frac{45}{x}=$ first pust of 17 , und $17-\frac{45}{x}=$ the second ;
then $(11-x)\left(17-\frac{45}{x}\right)=48$, or

$$
(11-x)(17 x-45)=48 x
$$

Whence $x=5$, or $\frac{193}{1}$,
$11-x=6$, or $\frac{88}{17}$, and $\frac{45}{x}=9$, or $\frac{8.5}{11}$;
$\therefore 17-\frac{45}{x}=8$, or $\frac{102}{11}$.
Hence the numbers are 5,6 , and 9,8 ,
 the conditions.
(23) Let $3 x=$ the first part of 21 , then $x=$ the first part $0^{*} 30$ and $(21-3 x)^{2}+(30-x)^{2}=585$;
developing and reducing
$x^{2}-{ }_{5}^{93} x=-{ }_{5}^{37}$.
Whence $x=6$, or $12 \frac{3}{3}$, and $3 x=18$, or $37 \frac{1}{5}$.

Since the second value of x gives for $3 x$ a number greater than 21, it is inadmissible.

The first value of x gives for the parts of 21,18 and $21-18=\mathbf{3}$ and for the parts of 30,6 and $30-6=24$.
(24) Let $x=$ the first part of 19 , then $19-x=$ the second part ; and since the difference of the squares of the first parts of each is 72 , therefore, $\sqrt{x^{2}+72}$ must represent the first part of 29 , and $29-\sqrt{x^{2}+72}$ the second part.
$\therefore\left(29-\sqrt{x^{2}+72}\right)^{2}-(19-x)^{2}=180$,
developing and reducing
$29 \sqrt{x^{2}+72}=19 x+186$;
squaring each side and reducing
$40 x^{2}-589 x=-2163$.
Whence $x=7$, or $\frac{309}{40}$; this gives
$\sqrt{x^{2}+72}=11$, or $\frac{459}{40}$.
$19-x=12$, or $\frac{451}{40}$,
$29-\sqrt{x^{2}+72}=18$, or $\frac{701}{40}$.
Whence the parts are 7,12 , and 11,18 ,

$$
\text { or } \frac{309}{40}, \frac{451}{40} \text {, and } \frac{459}{40}, \frac{70}{40}
$$

Article 239a.

(1) In order that the negative answer, -9 , when taken positively, shall be correct, the question should read: Required a number such, that twice its square, diminished by 8 times the number itself, shall be 90 .
(2) From this question we see that the negative values satisfy the question equally well with the positive, the only dif. fcrence being that in one case we subtract +3 from +7 and in the other, -7 from -3,
(3) Let $x=$ cost of watch, then $x=$ per cent. of loss and $x \times \frac{x}{100}=\frac{x^{2}}{100}=$ actual Joss.
$\therefore x-\frac{x^{2}}{100}=16$, or
$x-100 x=-1$ ค00.

Whence $x=50 \pm 30=20$, or 80 , either of which fully satisfies the conditions. T'lus,
$20-\frac{20}{100}$ of $20=20-4=16$;
$80-\frac{81}{100}$ of $80=80-64=16$
(4) These values of x show that no zositive number can be found which will satisfy the question. But if the question is changed to read thus: Required a number such, that 6 times the number, diminished by the square of the number, and the result subtracted from 7 , the remainder shall be 2 , either of the numbers, 1 and 5 , will satisfy the question.
(5) There is evidently but one solution, because if 4 is one of the numbers $10-4=6$ is the other; or, if 6 is one of the numbers $10-6=4$ is the other.
(6) These results show that the question is impossible in an arithmetical sense. This we also learn from Art. 236, since the greatest product that can be formed by dividing 10 into two parts, is 25.
(7) This question is similar to that of the problem of the lights (Art. 239), and the results may be obtained frous the results there given, by making $a=a, b=1$, and $c=n$.
When $a=12$ and $n=4$, the parts are 8 and 4 , or 24 and -12.
When $a=10$ and $n=1$, the parts are 5 and 5.
(8) Calling x the distance from the earth, $a=240000, \mathfrak{b}=80$ and $c=1$, we have by the solution to the problem of the lights, $x=\frac{a \sqrt{b}}{\sqrt{b}+\sqrt{c}}$, or $x=\frac{a \sqrt{b}}{\sqrt{b}-\sqrt{c}}$.
To prepare these formulæ for numerical calculation, inultiply both terms of the first by $\sqrt{b}-\sqrt{c}$, and of the second by $\sqrt{b}+\sqrt{c}$; this gives

$$
\begin{aligned}
& x=\frac{a(b-\sqrt{b c})}{b-c}=\frac{240000(80-\sqrt{80})}{79}=215865.5+ \\
& \text { or } x=\frac{a(b+\sqrt{b c})}{b-c}=\frac{240000(80+\sqrt{80})}{79}=270210.4+ \\
& a-x=240000-215865.5=24134.5 . \\
& \text { and } x-a=270210.4-240000=30210.4 .
\end{aligned}
$$

BINOMIALSURDS.

Article 24.

(3) $\mathrm{A}=11, \sqrt{\mathrm{~B}}=6 \sqrt{2}=\sqrt{72} ; \mathrm{C}=\sqrt{121-72}=\sqrt{4 \overline{9}}=7$;

$$
\therefore \sqrt{\mathrm{A}+\sqrt{\bar{B}}}=\sqrt{\frac{11+7}{2}}+\sqrt{\frac{11-7}{2}}=3+\sqrt{2} .
$$

(4) $\mathrm{A}=7, \sqrt{\mathrm{~B}}=4 \sqrt{3}=\sqrt{48} ; \mathrm{C}=\sqrt{49-48}=1$;

$$
\therefore \sqrt{A-\sqrt{B}}=\sqrt{\frac{7+1}{2}}-\sqrt{\frac{7-1}{-_{2}}}=2-\sqrt{ } 3 .
$$

(5) $\mathrm{A}=3, \sqrt{\mathrm{~B}}=2 \sqrt{2}=\sqrt{8} ; \mathrm{C}=\sqrt{9-8}=1$;

$$
\therefore \sqrt{\Lambda \pm \sqrt{\mathrm{B}}}=\sqrt{\frac{3+1}{2} \pm \sqrt{\frac{3-1}{2}}=\sqrt{\overline{2}} \pm 1 .}
$$

(6) $\mathrm{A}=13, \sqrt{\mathrm{~B}}=2 \sqrt{30}=\sqrt{120} ; \mathrm{C}=\sqrt{169-120}=7$;

$$
\therefore \sqrt{A+\sqrt{B}}=\sqrt{\frac{13+7}{2}}+\sqrt{\frac{13-7}{2}}=\sqrt{10}+\sqrt{3} .
$$

(7) $\mathrm{A}=17, \sqrt{\mathrm{~B}}=2 \sqrt{60}=\sqrt{240} ; \mathrm{C}=\sqrt{289-240}=7$;

$$
\therefore \sqrt{\Lambda+\sqrt{B}}=\sqrt{\frac{17+7}{2}-\sqrt{\frac{17-7}{2}}=2 \sqrt{3}+\sqrt{5} ~}
$$

8) $\mathrm{A}=x, \sqrt{\mathrm{~B}}=2 \sqrt{x-1}=\sqrt{4 x-4} ; \mathrm{C}=\sqrt{x^{2}-4 x+4}=x-2$

$$
\therefore \sqrt{A-\sqrt{B}}=\sqrt{\frac{x+x-2}{2}}-\sqrt{\frac{x-x+2}{2}}=\sqrt{x-1}-1 .
$$

9) $\mathrm{A}=0, \sqrt{\mathrm{~B}}=2 a \sqrt{-1}=\sqrt{-4 a^{2}} ; \quad \mathrm{C}=\sqrt{4 a^{2}}=2 a$;
$\therefore \sqrt{A+\sqrt{B}}=\sqrt{\frac{0+2 a}{2}}+\sqrt{\frac{0-2 a}{2}}=\sqrt{a}+\sqrt{-a}=$ $\sqrt{\alpha}(1+\sqrt{-1})$.
(10) $\Lambda=x+y+z, ~ \sqrt{B}=2 \sqrt{x z+y z}=\sqrt{4 x z+4 y z}$.

$$
\begin{aligned}
\mathrm{C}=\sqrt{\Lambda^{2}-\mathrm{B}} & =\sqrt{ }\left(x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z-4 x z-4 y z\right) \\
& =\sqrt{ }\left(x^{2}+y^{2}+z^{2}+2 x y-2 x z-9 y z\right)=x+y-z . \\
\therefore \quad \sqrt{\Lambda+\sqrt{\mathrm{B}}} & =\sqrt{\frac{x+y+z+x+y-z}{2}}+\sqrt{\frac{x+y+z-(x+y-z}{2}} \\
& =\sqrt{x+y}+\sqrt{z} .
\end{aligned}
$$

11) To find the square root of $b c+2 b \sqrt{b c-b^{2}}$.

$$
\begin{aligned}
& \mathrm{A}=b c, \sqrt{\mathrm{~B}}=2 b \sqrt{b c-b^{2}}=\sqrt{4 b^{3} c-4 b^{4}} ; \\
& \sqrt{\sqrt{\mathrm{A}^{2}-\mathrm{B}}}=\sqrt{b^{2} c^{2}-4 b^{3} c+4 b^{4}}=b c-2 b^{2}=\mathrm{C} . \\
& \sqrt{\Lambda+\sqrt{\mathrm{B}}}=\sqrt{\frac{b c+b c-2 b^{2}}{2}}+\sqrt{\frac{b \mathrm{c}-b c+2 b^{2}}{2}} \\
& =\sqrt{b c-b^{2}}+b .
\end{aligned}
$$

To find the square root of $b c-2 h \sqrt{b c-b^{2}}$.
$\mathrm{A}=b c, \sqrt{\mathrm{~B}}=2 b \sqrt{b c-b^{2}}=\sqrt{4 b^{3} c-4 b^{4}} ;$ $\sqrt{\mathrm{A}^{2}-\mathrm{B}}=\sqrt{b^{2} c^{2}-4 b^{3} c+4 b^{4}}=h c-2 b^{2}=\mathrm{C}$.

$$
\sqrt{\mathrm{A}-\sqrt{\bar{B}}}=\sqrt{\frac{\left(c++h c-2 b^{2}\right.}{2}}-\sqrt{\frac{b c-b c+2 b^{2}}{2}}
$$

$$
=\sqrt{l c-b^{2}}-b .
$$

$$
\therefore \sqrt{b c+2 b \sqrt{b c-b^{2}}}= \pm \quad\left\{\sqrt{b c-b^{2}}+b\right\}
$$

$$
\sqrt{b c-2 b \sqrt{b c-b^{2}}}= \pm \quad\left\{\sqrt{b c-b^{2}}-b\right\}
$$

$$
\text { Sum }= \pm 2 \sqrt{ } b \bar{c}-b^{2} . ~ A n s .
$$

To verify this result with numbers, let $b=1$ and $c=26$.

$$
\text { then } \begin{aligned}
& \sqrt{b c+2 b \sqrt{b c-b^{2}}}=\sqrt{26+2 \sqrt{25}}= \pm \sqrt{26+10}= \pm 6 \\
& \sqrt{b c-2 b \sqrt{b c-b^{2}}}=\sqrt{26-2 \sqrt{25}}= \pm \sqrt{26-10}= \pm 1 \\
& \text { and } \pm 6 \pm 4= \pm 10 .
\end{aligned}
$$

But $\pm 2 \sqrt{b c-b^{2}}= \pm 2 \sqrt{2 .}= \pm 10$.
The precediu:g example may be found in the French edition of Bourdon's A lgebra, where the answer is given $+2 /$ whic's may be obtained by giving the sign \pm to b.

TRINOMIALEQUATIONS.

Article 242.

(5) $x^{4}-25 x^{2}=-144$,

$$
\begin{aligned}
& x^{4}-25 x^{2}+6 \frac{2}{4}=+6 \frac{63}{4}-144={ }^{49} ; \\
& x^{2}-\frac{2}{2}= \pm \frac{7}{2}, \\
& x^{2}=\frac{2}{2} \pm \frac{7}{2}=16 \text { or } 9 . \\
& x= \pm 4 \text { or } \pm 3 .
\end{aligned}
$$

(6) $5 x^{4}+7 x^{2}=6732$, divide by 5 and complete the square,

$$
\begin{aligned}
& x^{4}+\frac{7}{3} x^{2}+\frac{49}{100}=\frac{49}{100}+\frac{6732}{5}=\frac{134689}{100}, \\
& x^{2}+7^{7}= \pm \frac{367}{10}, \\
& x^{2}=-\frac{7}{10} \pm \frac{367}{10}=36, \text { or }-\frac{374}{10}=-\frac{187}{5}, \\
& x= \pm 6, \text { or } \pm \sqrt{-\frac{187}{5}}= \pm \sqrt{\frac{-935}{25}}= \pm \frac{1}{5} \sqrt{-935} .
\end{aligned}
$$

The last answer in the book is $\pm_{\frac{1}{10}} \sqrt{-3740}$, which is the Aame as $\pm \frac{1}{5} \sqrt{-935}$, since $\sqrt{-3740}=\sqrt{-935} \times 4=2 \sqrt{-935}$.
(7) $9 x^{6}-11 x^{3}=488$, divide by 9 and complete the square,

$$
\begin{aligned}
& x^{6}-\frac{11}{9} x^{3}+\frac{1}{3} \frac{2}{4}=\frac{12}{3} \frac{1}{4}+\frac{48}{9}=\frac{17}{3} \frac{18}{24} ; \\
& x^{3}-\frac{11}{8}= \pm \frac{133}{18}, \\
& x^{3}=\frac{11}{18} \pm \frac{13}{18}=6, \text { or }-\frac{183}{27}, \\
& x^{3}=8, \text { or }-\frac{183}{27}, \\
& x= \pm 2, \text { or } \pm \sqrt[3]{-\frac{1}{2} 7} \times 183= \pm \frac{1}{3} \sqrt[3]{-183}, \text { or } \pm \frac{1}{3} \sqrt[3]{183}
\end{aligned}
$$

(8) Completing the square by adding $\frac{1}{4}$ to each member, we have

$$
\begin{aligned}
& x^{3}-x^{\frac{3}{2}}+\frac{1}{4}=6 \underline{2} \frac{001}{2} ; \\
& x^{\frac{3}{2}}-\frac{1}{2}= \pm 2 \frac{2}{2} \frac{9}{2} ; \\
& x^{\frac{3}{2}}=\frac{1}{2} \pm 2 \frac{2}{2} \frac{9}{2}=125, \text { or }-124 ; \\
& x^{3}=(125)^{2}=(5 \times 5 \times 5)^{2}, \text { or }(-124)^{2} ; \\
& x=5^{2}=25, \text { or }(-124)^{\frac{2}{3}}
\end{aligned}
$$

(9) Arranging the terms and complet.ng the square, by adding $\frac{1}{4}$ to each member, we have
$x^{\frac{5}{3}}+x^{\frac{5}{6}}+\frac{1}{4}=42_{4}^{25}$;
$x^{6}+\frac{1}{2}= \pm \frac{6}{2}$
$x^{\frac{6}{6}}=-\frac{1}{2} \pm \frac{6.5}{2}=32$, or -33 ;
$x^{\frac{1}{8}}=2$, or $(-33)^{\frac{1}{5}}$,
$x=64$, or $(-33)^{\frac{6}{5}}$.
(10) Let $\sqrt{x+5}=y$, then $x+5=y^{2}$, and the equation becomes, by substitution and transposition,
$y^{2}-y=6$.
Whence $y=3$, or -2 .

$$
\begin{aligned}
\therefore \sqrt{x+5} & =3, \text { or }-2, \\
x+5 & =9, \text { or } \quad 4, \\
x & =4, \text { or }-1 .
\end{aligned}
$$

(11) Add 3 to each side, let $\sqrt{x^{2}-3 x+1}=y$, then by substituting the value of y^{2} and transposing, we have
$y^{2}-2 y=3$.
Whence $y=3$, or -1 .
$\therefore \sqrt{x^{2}-3 x+11}=9$ or 1 .
From which, by squaring and solving the resulting equations, we readily find $x=2$, or 1 , or $\frac{3}{2} \pm \frac{1}{2} \sqrt{-31}$.
(12) Add 18 to each member, let $\sqrt{x^{2}-7 x+18}=y$, then $y^{2}+y=42$.
Whence y, or $\sqrt{x^{2}-7 x+18}=6$, or -7.
Squaring, $x^{2}-7 x+18=36$, or 49 .
Whence $x=9,-2$, or $\frac{1}{2}(7 \pm \sqrt{173})$.
(13) To render this equation of a quadratic form, the quantity in the parenthesis in the right member must be made the same as that in the parenthesis on the left. This may be done by adding -7 to the quantity in the vinculum, and its equal, $+7 \times 11=77$, without; the equation then becomes

$$
\left(x^{2}-9\right)^{2}=3+77+11\left(x^{2}-2-7\right)=80+11\left(x^{2}-9\right) .
$$

Putting y and y^{2} to represent $x^{2}-9$, and $\left(x^{2}-9\right)^{2}$, we have $y^{2}-11 y=80$;
whence $y=16$, or -5.
$\cdot x^{2}-9=16$, or -5 , and $x= \pm 5$, or ± 2.
(14) Transposing $\frac{8}{x}$ and putting $y=x+\frac{8}{x}$, we have
$y^{2}+y=42$.
Whence $y=+6$, or -7 ;
$\therefore x+\frac{8}{x}=+6$, or -7 ,
and $x^{2}-6 x=-8$, or $x^{2}+7 x=-8$.
Whence $x=4$ or 2 , or $\frac{1}{2}(-7 \pm \sqrt{17})$.
(15) This equation may be placed under the form
$x^{4}\left(1+\frac{1}{3 x}\right)^{2}-3 x^{2}\left(1+\frac{1}{3 x}\right)=70$.
Putting $x^{2}\left(1+\frac{1}{3 x}\right)=y$, we have
$y^{2}-3 y=70$;
whence $y=10$, or -7 .
$\therefore x^{2}\left(1+\frac{1}{3 x}\right)=10$, or -7 ,

$$
x^{2}+\frac{1}{3} x=10, \text { or }-7 .
$$

Whence $x=3$, or $-3 \frac{1}{3}$, or $\frac{1}{6}(-1 \pm \sqrt{-251})$
(16) Multiplying both sides by \sqrt{x}, we have
$x \sqrt{6-x^{2}}=1+x^{2}$,
Squaring $x^{2}\left(6-x^{2}\right)=1+2 x^{2}+x^{4}$,
transposing and reducing $x^{4}-2 x^{2}=-\frac{1}{2}$.
Whence $x= \pm \sqrt{ }\left(1 \pm \frac{1}{2} \sqrt{2}\right)$.

Article 243.

(2) We find the square root is $x^{2}-x$, with the remainder $-3 x^{2}+3 x$; hence the equation may be written thus, $\left(x^{2}-x\right)^{2}-3\left(x^{2}-x\right)=108$.

Putting $x^{2}-x=y$, we find $y=12$, or -9 .
$\therefore x^{2}-x=12$, or -9 .
Whence $x=4$, or -3 , or $1(1 \pm \sqrt{-35})$.
(3) The square root of the left member is $x^{2}-x$, with the remainder $-x^{2}+x$; hence the equation may be written thus, $\left(x^{2}-x\right)^{2}-\left(x^{2}-x\right)=30$.
Putting $x^{2}-x=y$, we find $y=6$, or -5.

- $x^{2}-x=6$, or -5.

Whence $x=3$, or -2 , or $\underset{2}{1}(1 \pm \sqrt{-19})$.
(4) Multiplying both sides by x, we then find the square roct of the left member is $x^{2}-3 x$ with the remainder $+2 x^{3}-6 x$; hence, the equation may be written thus, $\left(x^{2}-3 x\right)^{2}+2\left(x^{2}-3 x\right)=0$.
Let $x^{2}-3 x=y$, then $y^{2}+2 y=0$, and $y=0$, or -2 .
$\therefore x^{2}-3 x=0$, or -2 .
Whence $x=0$, or 3 , or 2 , or 1 .
The value, $x=0$, does not satisfy the given equation, but is a root of the equation $x\left(x^{3}-6 x^{2}+11 x-6\right)=0$, and was introduced by multiplying the given equation by x.
(5) The square root of the left member is $x^{2}-3 x$ with the remainder $-4 x^{2}+12 x$; henee the equation may be written thus, $\left(x^{2}-3 x\right)^{2}-4\left(x^{2}-3 x\right)=60$.
Let $x^{2}-3 x=y$, then $y^{2}-4 y=60$;
whence $y=10$, or -6 .
$\therefore x^{2}-3 x=10$, or -6.
Whence $x=5,-2$, or $\frac{1}{2}(3 \pm \sqrt{-15})$.
(6) The square root of the left member is $x^{2}-4 x$, with the remainder $-6 x^{2}+24 x$; hence, the equation may be written $\left(x^{2}-4 x\right)^{2}-6\left(x^{2}-4 x\right)=-5$.
Let $x^{2}-4 x=y$, then $y^{3}-6 y=-5$; from which $y=5$ or 1 ; $\therefore x^{2}-4 x=5$ or 1 .
Whence $x=5$, or -1 , or $2 \pm \sqrt{5}$.
(7) Multiplying both members by 4 to elear the equation of fractions and render the first term a perfeet square; then transposing $16 x^{3}$, we find the square root of the leit inem

EQUATIONS OFTHESECOND DEGREE 145
ber is $4 x^{2}-2 x$, with the remainder $-4 x^{2}+2 x$; hence the equation may be written
$\left(4 x^{2}-2 x\right)^{2}-\left(4 x^{2}-2 x\right)=132$.
Let $4 x^{2}-2 x=y$, then $y^{2}-y=132$, and $y=12$, or -11 .
$\therefore 4 x^{2}-2 x=12$, or -11 .
Whence $x=2,-\frac{3}{2}$, or $\frac{1}{4}(1 \pm \sqrt{-43})$.
(8) Observe that $\frac{12+\frac{1}{2} x}{3 x}=\frac{4}{x}+\frac{1}{6}$, then omitting $\frac{1}{6}$ on each side, and multiplying both sides of the equation by $14 x^{3}$ to clear it of fractions; after transposing we nave
$x^{4}-14 x^{3}+56 x^{2}-49 x=60$.
The square root of the left member is $x^{2}-7 x$ with the remainder $7 x^{2}-49 x$; hence, the equation may be written
$\left(x^{2}-7 x\right)^{2}+7\left(x^{2}-7 x\right)=60$.
Let $x^{2}-7 x=y$, then $y^{2}+7 y=60$, from which we find $y=5$, or -12 .
$\therefore x^{2}-7 x=5$, or -12 .
Whence $x=4$, or 3 , or $\frac{1}{2}(7 \pm \sqrt{69})$.

SIMULTANEOUSEQUATIONSOFTHESECOND
DEGREE GONTAYNYNG TWO OR MORE IINKNOWN QUANTITIES.

Article 245.

Note.- Instead of indicating each step of the solution of the examples in this article, it has only been deemed necessary in most cases to point out the particular step on which the solution depends.
(5) Subtract the square of the first equation from the second, then add the remainder to the second, and extract the square root, which will give $x+y$.
(6) Add twice the second equation to the first and extract the square root; also, subtract twice the second equation from the first and extract the square root.
(7) Subtract the second equation from the square of the first; then subtract the remainder from the second equation and extract'the square root.
(8) Divide the first equation by the second, this will give $x+y$.
(9) From the cube of the first equation subtract the second, divide the remainder by 3 , and we have $x y(x+y)=308$; divide by $x+y=11$, and we have $x y=28$. Having $x-1-y$ and $x y$, we can readily find x and y, as in Form 1, Art. 245.
Or, thus, Divide the second equation by the first, subtract the quotient from the square of the first, and divide by 3 , which will give $x y$.
(10) From the first equation by transposing and extracting the cube root of both members, we have $x=2 y$; then by substitution in the second we readily find the value of y, and then x.
(11) Subtract the second equation from the first; add the remainder to the first and extract the square root, which will give $x+y= \pm 12$, then divide the second equation by this, and we have $x-y= \pm 2$.
(12) Divide the first equation by the second, this gives $x+y=8$; from the square of this subtract the -second equation, and divide by 3 , this gives $x y=15$; subtract this from the second equation, and extract the square root, which will give $x-y= \pm 2$.
(13) Subtract the first equation from the square of the second, this gives $x y=48$; subtract three timez this equation from the first and extract the square root, this gives $x-y= \pm 8$.
11) Divide the first equation by the second, transpose $3{ }_{2}^{1} x y$, and subtract the resulting equation from the square of the second, this gives $\frac{1}{2} x y=4$, or $x y=8$; then by the metbod explained in Form 1, Art. 245, we readilv find $x+y= \pm$.
(16) Dividing the first equation by the second, we find $x^{2}-x y$ $+y^{2}=7$; subtracting this from the second equation we have $2 x y=6$, or $x y=3$; then adding this to the second equation and extracting the square root, we find $x+y$ $= \pm 4$; alsu, subtracting $x y=3$ from the equation $x^{2}-x y$ $+-y^{2}=7$, and extracting the square root, we find $x--y= \pm 2$

EQUATIONS OF TIIE SECOND DEGREE. 147
(16) Let $x^{\frac{1}{2}}=\mathrm{P}$ and $y^{\frac{1}{2}}=\mathbf{Q}$, the equations then become $\mathbf{P}^{2}-\mathbf{Q}^{2}=\mathbf{P}+\mathbf{Q}$
$\mathrm{P}^{3}-\mathrm{Q}^{3}=37$.
Dividing each side of (1) by $P+Q$, we have $P-Q=1$, then dividing each side of (2) by $P-Q=1$, we have
$\mathrm{P}^{2}+\mathrm{PQ}+\mathrm{Q}^{2}=37$,
$P^{2}-2 P Q+Q^{2}=1$, by squaring $P-Q=1$.
Subtracting and dividing by 3 , we find $P Q=12$, then by adding this to (3) and extracting the square root, we find $\mathrm{P}+\mathrm{Q}= \pm 7$,
but $\mathrm{P}-\mathrm{Q}=1$.
Whence $P=4$, or -3 , and $Q=3$, or -4 , $\therefore x=16$, or 9 , and $y=9$, or 16 .
(17) Let $x^{\frac{1}{4}}=\mathrm{P}$ and $y^{\frac{1}{3}}=\mathrm{Q}$, then by substitution the equations become $P+Q=5$, $P^{2}+Q^{2}=13$.
The values of \mathbf{P} and \mathbf{Q} found as in example 1, page 212 are $\mathrm{P}=2$ or $3, \quad \mathrm{Q}=3$ or 2 .

$$
\begin{aligned}
& \therefore x^{\frac{1}{4}}=2 \text { or } 3, \text { and } x=16 \text { or } 81 ; \\
& y^{\frac{1}{3}}=3 \text { or } 2, \text { and } y=27 \text { or } 8 .
\end{aligned}
$$

(18) Let $x^{\frac{1}{3}}=\mathrm{P}$ and $y^{\frac{1}{3}}=\mathrm{Q}$, then by substitution the equations become $\mathrm{P}+\mathrm{Q}=5$,

$$
\mathrm{P}^{3}+\mathrm{Q}^{3}=35 .
$$

The values of \mathbf{P} and \mathbf{Q} found as in example 3, page 213, are $\mathrm{P}=2$ or $3, \mathrm{Q}=3$ or 2 .

$$
\begin{aligned}
& \therefore x^{\frac{1}{3}}=2 \text { or } 3, \text { and } x=8 \text { or } 27 ; \\
& y^{\frac{1}{3}}=3 \text { or } 2, \text { and } y=27 \text { or } 8 .
\end{aligned}
$$

(19) Let $x^{\frac{1}{2}}=\mathrm{P}$ and $y^{\frac{1}{2}}=\mathrm{Q}$, then by substitution the equations become $\mathrm{P}+\mathrm{Q}=4$,

$$
\mathrm{P}^{3}+\mathrm{Q}^{3}=28 .
$$

The values of P and Q found as in the preceding example, are $\mathrm{P}=3$ or $1, \mathrm{Q}=1$ or 3 .

$$
\begin{aligned}
& \therefore x^{\frac{1}{2}}=3 \text { or } 1, \text { and } x=9 \text { or } 1 . \\
& y^{\frac{1}{2}}=1 \text { or } 3, \text { and } y=1 \text { or } 9 .
\end{aligned}
$$

(20) Square both members of the first equation, and from the result subtract four times the cube of the second, and we have

$$
x^{6}-2 x^{3} y^{3}+y^{6}=112225
$$

extracting the sq. root $x^{3}-y^{3}= \pm 335$;

$$
\text { but } x^{3}+y^{3}=351
$$

Whence, by adding and subtracting, dividing by 2 and extractng the cube root, we hare $x=7$ or 2 , and $y=2$ or 7 .
(21) Raising both sides of (1) to the fourth power, we have

$$
\begin{align*}
& \quad x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}=256 \\
& \text { but } x^{4}+y^{4}=82 ; \\
& \therefore \quad 2 x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+2 y^{4}=338 \\
& \text { or } \quad x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+y^{4}=169 \tag{3}
\end{align*}
$$

Extracting the sq. root $x^{2}+x y+y^{2}=13$
Squaring eq. (1) $x^{2}+2 x y+y^{2}=16$;
Subtracting $x y=3$; hence $3 x y=9$, and subtracting this from (3), and extracting the square root of the resulting equation, we get $x-y= \pm 2$; from this, and $x+y=4$, we get $x=3$, or 1 , and $y=1$, or 3 .
(22) Adding the three equations together, and dividing bv 2. we have $x y+x z+y z=\frac{a+b+c}{2}$,

Sibtracting from this successively the three given equations, we have $y z=\frac{b+c-a}{2}$,

$$
\begin{align*}
& x z=\frac{a+c-b}{2} \tag{6}\\
& x y=\frac{a+b-c}{2}
\end{align*}
$$

Multiplying the three equations together, and extracting the square root, $x y z=\int\left\{\frac{(a+b-c)(a+c-b)(b+c-a)}{8}\right\}$.

Dividing eq (8) by equations (5), (6), (7), respectively, we obtain the values of x, y, and z. Thus, to find x

$\left.=\sqrt{\{(a+b-c)(a+c-b)(b+c-a)} 8 \frac{4}{8} \times \frac{4}{(b+c-a)^{2}}\right\}$
$= \pm \sqrt{\frac{(a+b-c)(a+c-b)}{2(b+c-a)} .}$

ADFECTEDEQUATIOTS.

Articie 250.

(3) Adding the two equations together, and dividing by 2, we find $x^{2}+x=240$.
Subtracting the second equation from the first, and dividing by 8, we find $y^{2}+-y=90$.
(4) Multiplying the first equation by 4 , and subtracting the result from the second, and transposing, we find
$y^{2}-18 y=45$.
Whence $y=3$, or 15 , and $x=14-4 y=2$, or -46 .
(5) From the first equation $y=\frac{3 x+14}{2}=1 \frac{1}{2} x+7$, this substi. tuted in the second gives
$3 x^{2}+2\left({ }_{2}^{1} x-4\right)^{2}=14$, developing and reducing, we have $x^{2}-\frac{15}{5} x=-\frac{12}{5}$. Whence $x=2$, or $1 \frac{1}{5}$, and $y=10$, or $8 \frac{4}{5}$.
(6) Clearing the second equation of fractions by multiplying by $x y$, and substituting the value of $x=y+2$, found from the first equation, and reducing, we have

- $y^{2}-{ }_{4}^{7} y={ }_{4}^{15}$, and $y=3$, or $-1 \frac{1}{4}$.
(7) Let $y=t x$, then substituting this instead of y, finding the value of x^{2} from the resulting equations, placing these values equal to each other, and reducing, we find $t= \pm 1 \frac{1}{2}$.

Then substituting this in the value of x^{2}, we find x and thence y.
(8) Let $y=t x$, then substituting this instead of y, finding the value of x^{2} from the resulting equations, placing these values equal to each other, and reducing, we find $t=+1 \frac{1}{2}$, or $-\frac{4}{5}$. Having this, the values of x and y are readily found by substitution.
(9) Let $x y=v$, then by substituting in the first equation, and transposing, we have $v^{2}+4 v=96$, from which we find v, or $x y=+8$, or -12 . Having the values of $x+y$ and $x y$, we readily find x and y by the method explained in Form 1, Art. 245.
(10) Let $\frac{x}{y}=v$, then by substituting the values of v and v^{2} in the first equation we find $v^{2}+4 v=\frac{8 \bar{y}}{9}$, from which v or $\frac{x}{y}=+\frac{5}{3}$, or $-\frac{17}{3}$. Then, from these equations, and $x-y=2$, we rearlily find x and y.
(11) Denoting $x y$ by v, the first equation becomes, by substitution and transposition, $v^{2}+8 v=180$, from which we find v or $x y=+10$, or -18 .
From the equations $x y=+10$, and $x+3 y=11$, we find $x=5$, or f, and $y=2$, or $\frac{5}{3}$.

From the equations $x y=-18$, and $x+3 y=11$, we find $x=\frac{1}{2}$于 $\frac{1}{2} \sqrt{337}$, and $y=\frac{11}{6} \pm \frac{1}{6} \sqrt{337}$.
(12) Let $\sqrt{x+y}=v$, then from the 1^{n} equation, we lave $v^{2}+v=1 D$, from which $v=3$, or -4 ; hence, v^{2}, or $x+y=9$, or 16. Having the values of $x+y$ and $x^{2}+y^{2}$, we can find the values of x and y by the method explained in example $\mathrm{J}^{\text {st, }}$ Art. 245. The equations $x+y=9$, and $x^{2}+y^{2}=41$, give $x=5$ or 4 , and $y=4$ or 5 . The equations $x+y=16$, and $x^{2}+y^{2}=41$, give $x=8 \pm \frac{1}{2} \sqrt{-174}$, and $y=8 \mp \frac{1}{2} \sqrt{-174}$.
(13) Adding twice the second equation to the first, we have

$$
\begin{aligned}
& x^{2}+2 x y+y^{2}+x+y=30, \\
& \text { or }(x+y)^{2}+(x+y)=30 .
\end{aligned}
$$

Whence $x+y=+5$, or -6 .

From these equations and the value of $x y=6$, we readily find the values of x and y.
(14) Transposing $2 x y$ in the first equation, and then adding both equations together, we have
$x^{2}+2 x y+y^{2}+4 x+4 y=117$,
or $(x+y)^{2}+4(x+y)=117$.
Whence $x+y=+9$, or -13 , and $x=9-y$, or $-13-y$.
Substituting these values of x in the second of the given ϵ quations, we have $y^{2}+2 y=35$, or $y^{2}+2 y=57$.

From the 1^{14} equation we find $y=5$, or -7 ; whence $x=9$ or 16. From the $2^{\text {nd }}$ equation we find $y=-1 \pm \sqrt{58}$; whence $x=-12 \pm \sqrt{58}$.
(15) Let $\frac{1}{x}=v$ and $\frac{1}{y}=z$, the equations then become

$$
\begin{align*}
& v+z=a, \tag{1}\\
& v^{2}+z^{2}=b . \tag{2}
\end{align*}
$$

Subtracting the second equation from the square of the frist and then subtracting the remainder from the second, and extracting the square root, we find v or $\frac{1}{x}=\frac{a \pm \sqrt{2 b-a^{2}}}{2}$, and z or $\frac{1}{y}$ $=\frac{a \pm \sqrt{2 b-a^{2}}}{2}$; whence $x=\frac{2}{a \pm \sqrt{2 b-a^{2}}}$, and $y=\frac{2}{a \pm \sqrt{2 b-a^{2}}}$.
(16) From the first equation $x=\frac{12}{y+y^{2}}$, and from the second $x=\frac{18}{1+y^{3}}$; whence $\frac{12}{y+y^{2}}=\frac{18}{1+y^{3}}$, or $12\left(1+y^{3}\right)=18\left(y+y^{2}\right)$; dividing each member by 6 , and then by $1+y$, we have $2\left(1-y+y^{2}\right)=3 y$. From this equation we readily find $y=2$, or $\frac{1}{2}$; whence $x=2$, or 16 .
(17) Adding twice the sccond equation to the first, we have
$x^{2}+2 x y+y^{2}+x+y=156$,
or $(x+y)^{2}+(x+y)=156$.
Whence $x+y=+12$, or -13 .
By substituting the value of $x+y$ in the second equation, wa find $x y=27$, or 52 .

From the equations $x+y=12$, and $x y=27$, we find $x=9$ or 3 and $y=3$, or 9 .

From the equations $x+y=-13$, and $x y=52$, we faid $x=\frac{1}{2}(-13 \pm \sqrt{-39})$, and $y=\frac{1}{2}(-13 \mp \sqrt{-39})$.
18) From the $1^{3 t}$ equation, by transposing, we find $(x+y)^{2}-3(x+y)=28$.
Whence $x+y=7$, or -4 , and $y=7-x$, or $-4-x$.
Substituting the value of y instead of y in the second equation, we have $2 x^{2}-17 x=35$, or $2 x^{2}+5 x=-35$.

From the first of these equations we find $x=5$, or $3 \frac{1}{2}$, whence $x=2$, or $3 \frac{1}{2}$.

From the second we find $x=-\frac{5}{4} \pm \frac{1}{4} \sqrt{-255}$, and $y=-\frac{1}{4} \mp \frac{1}{4}$ $\sqrt{-255}$.
(19) Let $\left(\frac{3 x}{x+y}\right)^{\frac{1}{2}}=v$, then $\left(\frac{x+y}{3 x}\right)^{\frac{1}{2}}=\frac{1}{v}$, and $v+\frac{1}{v}=2$, or $v^{2}-2 v=-1$, whence $v=+1$.
$\therefore \frac{3 x}{x+y}=1$, whence $2 x=y$.
Substituting $2 x$ instead of y in the second equation we have $2 x^{2}-3 x=54$.

Whence $x=6$, or $-4 \frac{1}{2}$; hence $y=12$, or -9 .
(20) Transposing $3 y$ and adding 5 to each member, we have
$x^{2}+3 y+5+4\left(x^{2}+3 y+5\right)^{\frac{1}{2}}=60$.
Let $\left(x^{2}+3 y+5\right)^{\frac{1}{2}}=v$, then
$v^{2}+4 v=60$.
Whence $v=6$, or -10 .
. . $x^{2}+3 y+5=36$, or 100 .
frinding the value of y from the second equation and substituting it in the preceding equations, and reducing, we have $x^{2}+\frac{18}{7} x$ $=\frac{265}{7}$, or $x^{2}+{ }^{18} x=7 \frac{13}{2}$.

From the first equation $x=5$, or $-\frac{53}{7}$, then since $y=\frac{6 x-16}{7}$, we filld $y=2$, or $-{ }_{4}^{43} 0^{\circ}$.

From the second equation we find $x=-\frac{9}{7} \sqrt{317}$, and thence

(21) The first equation is
$\frac{y}{(x+y)^{\frac{3}{2}}}+\frac{\sqrt{x+y}}{y}=\frac{17}{4 \sqrt{x+y}}$.
Multiplying both members by $\sqrt{x+y}$, we have
$\frac{y}{x+y}+\frac{x+y}{y}=\frac{17}{4}$.
Let $\frac{y}{x+y}=v$, then $v+\frac{1}{v}=\frac{17}{4}$.
Whence v or $\frac{y}{x+y}=4$, or $\frac{1}{4}$.
From the equations $\frac{y}{x+y}=4$, or $\frac{1}{4}$, we find $x=-\frac{3}{4} y$, or $+3 y$.
Substituting the first value of x in the equation $x=y^{2}+2$, w6 find $y=-\frac{3}{8} \pm \frac{1}{8} \sqrt{-119}$; hence $x=\frac{9}{3} \Psi_{3}^{3} \frac{3}{2} \sqrt{-119}$.

Substituting the second. value of x in the equation $x=y^{2}+2$, we find $y=2$ or 1 ; hence $x=6$ or 3 .

QUESTIONS PRODUCINGSIMULTANEOUSEQUA-
TIONSOFTHE SECOND DEGREEOONTAINING TWOOR MOREUNKNOWNQUANTITIES.

Article 251.

Note.- As the first five examples may be solved without completing the square, their solutions will be given in this form.
(1) Let x represent the greater number and y the less, then $y(x+y)=4 x$,
and $x(x+y)=9 y$.
Multiplying the equations together, dividing both members by $x y$, and extracting the square root, we find $x+y=6$.

Substituting 6 for $x+y$ in (1), we lave $6 y=4 x$, or $y=\frac{2}{3} x$ Then from the eq ation $x+y=6$, we have $x+\frac{2 x}{3}=x$; whence $x=3.6$, and $y=2.4$.
(2) Let $x=$ the digit in ten's place and $y=$ the digit is unit's place, then $10 x+y=$ the number, and

$$
\begin{equation*}
x(10 x+y)=10 x^{2}+x y=46, \tag{1}
\end{equation*}
$$

also $x(x+y)=x^{2}+x y=10$

Subtracting (2) from (1), $9 x^{2}=36$, whence $x=2$, and y is readi'y fornd $=3$.
(4) Let $x=$ the greater number and y the less, then

$$
\begin{aligned}
& (x-y)\left(x^{2}-y^{2}\right)=32, \\
& (x+y)\left(x^{2}+y^{2}\right)=272 .
\end{aligned}
$$

For the method of finding the values of x and y, see the A.gebra, example 4, page 213.
(5) Let x and y represent the numbers, then

$$
\begin{array}{r}
x y=10 \\
x^{3}+y^{3}=133
\end{array}
$$

For the method of finding the values of x and y, see the solvcion to example 20, Art. 245, (page 148, of Key).
(6) Let $x=$ the greater number and y tha less. then

$$
\begin{align*}
& \frac{(x+y) x}{y}=24, \tag{1}\\
& \frac{(x+y) y}{x}=6 .
\end{align*}
$$

Dividing the first equation by the secoud, we have $\frac{(x+y) x}{y} \times \frac{x}{(x+y) y}=\frac{x^{2}}{y^{2}}=\frac{24}{6}=4$.
Whence $\frac{x}{y}=2$, and $x=2 y$; substituting this value of x in (1) we find $6 y=24$, or $y=4$; hence $x=8$.
(6) Let $x=$ the less number, then $x+15=$ the greater, and $\frac{x(x+15)}{2}=x^{3}$.
Dividing by x, and completing the square, we find $x=3$, or $-2 \frac{1}{2}$; hence $x+15=18$, or $12 \frac{1}{2}$, therefore the numbers are 3 and 13 , or $-2 \frac{1}{2}$, and $12 \frac{1}{2}$.
(7) Let $x=$ the greater number and $y=$ the less, then

$$
x y=24,
$$

and $x^{2}-y^{2}=20$.
From the first equation $y=\frac{24}{x}$; substituting this ior y in the second equation, and clearing of fractions, we find $x^{1}-20 x^{2}=576$.

Whence $x^{2}=36$, and $x=6$; hence $y=4$.

EQUATIONS OF THE SECONL DEGREE. I55
(8) Let $x=$ the greater number, and $y=$ the less, then

$$
\begin{align*}
& x^{2}+x y=120 \tag{1}\\
& x y-y^{2}=16 . \tag{2}
\end{align*}
$$

Let $y=v x$, then by substitution the equations become

$$
x^{2}+x^{2} v=120, \text { whence } x^{2}=\frac{120}{1+v}
$$

anc $v x^{2}-v^{2} x^{2}=16$. whence $x^{2}=\frac{16}{v-v^{2}}$.

$$
\frac{120}{1+v}=\frac{16}{v-v^{2}} .
$$

From this equation we find $v=\frac{2}{3}$, or $\frac{1}{5}$,
then $x^{2}=\frac{120}{1+v}=72$, or 100 ,
and $x=6 \sqrt{2}$, or 10 ,

$$
y=4 \sqrt{2}, \text { or } 2
$$

I'le answers 10 and 2 are the only ones given in the Algebra, but it may be easily shown that the others are strictly true in an arithmetical sense.
(9) Let x and y represent the numbers, then

$$
\begin{align*}
x^{2}+y^{2}+x+y & =42 \tag{1}\\
x y & =15 . \tag{2}
\end{align*}
$$

If we add twice the second equation to the first. the resulting equation is
$(x+y)^{2}+(x+y)=72$.
Whence $x+y=8$, or -9 .
Having $x-y$ and $x y$, the values of x and y are to be found as in example 13 , Art. 250 . (See Key, page 150.)

We thus find $x=5$ or 3 , and $y=3$ or 5 , or $x=\frac{-9 \pm \sqrt{21}}{2}$, and $y=\frac{-9 \mp \sqrt{21}}{2}$.
(10) Let x and y represent the numbers, then

$$
\begin{align*}
& x+y+x y=47 \tag{1}\\
& x^{2}+y^{2}-(x+y)=62 \tag{2}
\end{align*}
$$

For the method of finding the values of x and y see he solu tion to example 17, Alt. 250, (Key, page 151).
（11）Let $x=$ the greater number，and $y=$ the less，then

$$
\begin{align*}
x y & =x+y, \tag{1}\\
x^{2}-y^{2} & =x+y . \tag{2}
\end{align*}
$$

Dividing each member of（2）by $x+y$ ，we have $x-y=1$ ，or $x=y+1$ ．
Substituting this value of x in（1），and reducing，we find $y^{2}-y=1$ ．
Whence $y=\frac{1}{2} \pm \frac{1}{2} \sqrt{5}$ ，and $x=\frac{3}{2} \pm \frac{1}{2} \sqrt{5}$ ．
In order that the numbers may be positive，we can only use the upper sign ；this gives $x=2.668$ ，and $y=1.668$ nearly．

12）Let $x=$ the less number，and $x y=$ the greater，then

$$
\begin{align*}
x^{2} y & =x^{2} y^{2}-x^{2}, \tag{1}\\
x^{2} y^{2}+x^{2} & =x^{3} y^{3}-x^{3} . \tag{2}
\end{align*}
$$

Dividing each member of（1）by x^{2} ，we have $y=y^{2}-1$ ，or $y^{2}=y+1$ ，from which we find $y=\frac{1}{2}+\frac{1}{2} \sqrt{5}$ ．

Dividing each member of（2）by x^{2} ，we have $y^{2}+1=x\left(y^{3}-1\right)$ ， but $y^{2}=y+1$ ，and multiplying both sides by y ，we have $y^{3}=y^{2}$ $+y=y+y+1=2 y+1$ ．Substituting these values of y^{3} and y^{3} ， the equation becomes

$$
\begin{aligned}
& y+2=x(2 y) ; \\
& \text { hence } x=\frac{y+2}{2 y}=\frac{\frac{5}{2}+2 \sqrt{5}}{1+\sqrt{5}}=\frac{\left(\frac{5}{2}+\frac{1}{2} \sqrt{5}\right)}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\
& =\frac{\frac{5}{2}-2 \sqrt{5}-5}{1-5}=\frac{-2 \sqrt{5}}{-4}=\frac{1}{2} \sqrt{5} . \\
& \therefore x=\frac{1}{2} \sqrt{5}, \text { and } x y=\left(1+\frac{1}{2} \sqrt{5}\right)\left(\frac{1}{2} \sqrt{5}\right)=1 \sqrt{5}+3 \\
& ={ }_{4}^{1}(5+\sqrt{5}) .
\end{aligned}
$$

（13）Let $x=$ the price in dollars of a pound of mace，and $\vartheta=$ the price of a pound of cloves，then

$$
\begin{equation*}
80 x+100 y=65 ; \tag{1}
\end{equation*}
$$

$\frac{20}{y}=$ pounds of cloves for 20 dollars，and $\frac{10}{x}=$＂＂mace for 10 dollars．
$\therefore \frac{20}{y}-60=\frac{10}{x}$ ．

From these equations we readily find $x=\frac{1}{6}$ dollar $=50 \mathrm{cts}$. and $y=\frac{1}{4}$ dollar $=25 \mathrm{cts}$.
(14) This question may be solved by using only one unknown quantity. Thus,
Let $3 x=A$'s gain, then $20 x=B$'s stock, and $100-3 x=$ B's gain, and $40 x-200=$ A's stock.

$$
\therefore 40 x-200: 20 x:: 3 x: 100-3 x .
$$

Since the product of the means is equal to the product of the extremes, $60 x^{2}=(40 x-200)(100-3 x)$;
reducing $x^{2}-\frac{30}{9} x=$ - 1000 .
Whence $x=20$, hence $3 x=60=\mathrm{A}$'s gain, \&c.
(15) Let x and y represent the numbers, then by the question

$$
\begin{align*}
& \quad x y+x+y=23, \tag{1}\\
& x^{2}+y^{2}-5(x+y)=8 . \tag{2}\\
& \text { Adding twice eq. (1) to eq. (2), we have } \\
& x^{2}+2 x y+y^{2}-3(x+y)=54, \\
& \text { or } \quad(x+y)^{2}-3(x+y)=54 .
\end{align*}
$$

This is a quadratic form and we readily find $x+y=9$, then by substituting the value of $x+y$ in eq. (1) we find $x y=14$. Having $x+y$ and $x y$, we can find x and y. (See Form 1, Art. 245.)
(16) Let x, y, and z represent the numbers, then

$$
\begin{align*}
x-y-(y-z)=x-2 y+z & =5 \tag{1}\\
x+y+z & =44 \tag{2}\\
x y z & =1950 \tag{3}
\end{align*}
$$

Subtracting eq. (1) from (2), and dividing by 3 , we find $y=13$; then substituting this value of y in (2) and (3), we have

$$
\begin{aligned}
x+z & =31, \\
x z & =150 .
\end{aligned}
$$

Whence by Form 1sf, Art. 245, we readily find $x=25$, and $z=6$.
(17) Let x, y, and z represent the parts, then

$$
\begin{align*}
& x+y+z=26 \tag{1}\\
& x^{2}-y^{2}=y^{2}-z^{2} \tag{2}\\
& x^{2}+y^{2}+z^{2}=300 \tag{3}
\end{align*}
$$

From eq. (2) by transposing $y^{2}-z^{2}$, we have $x^{3}-2 y^{2}+z^{2}=0$.
Subtracting this from (3), dividing by 3 , and extracting the square root, we have $y=10$; then by substitution, equations (1) and (2) reduce to $x+y=16$,

$$
\text { and } x^{2}+y^{2}=200 \text {. }
$$

These equations are similar to those in example 1, Art. 245, and may be solved in a similar manner.
(18) Let x and y represent the number of men respectirely in the fronts of the columns A and B, when each consisted of as many ranks as it had men in front; then x^{2} and y^{2} represent the number of men in the respective columns.
$\therefore \frac{x^{2}}{y}=$ number of men in rank, when A was drawn up with the front that B had, and $\frac{y^{2}}{x}=$ the number of men in rank when B was drawn up with the front that A had, hence $x+y=84$,

$$
\begin{equation*}
\frac{x^{2}}{y}+\frac{y^{2}}{x}=91 . \tag{1}
\end{equation*}
$$

Multiplying both members of (2) by $x y$, we have

$$
\begin{equation*}
x^{3}+y^{3}=91 x y \tag{3}
\end{equation*}
$$

Cubing eq. (1) and subtracting (3) from the result, we have $3 x y(x+y)=(84)^{3}-91 x y$, but $x+y=84$,

$$
\begin{aligned}
252 x y & =(84)^{3}-91 x y, \\
343 x y & =(84)^{3} \\
\text { or, } 7^{3} x y & =(7 \times 12)^{3}=7^{3} \times 12^{3} \\
x y & =12^{3}=1728 .
\end{aligned}
$$

Having $x+y=84$, and $x y=1728$, we find $x=48$, and $y=36$, jy the method of Form 1, Art. 245.

$$
\begin{aligned}
\therefore \quad & x^{2}=48^{2}=2304=\text { men in column } \mathbf{A} ; \\
& y^{2}=36^{2}=1296=6 \quad \text { " } .
\end{aligned}
$$

FORMULE.

Article 252.

Note.- Eximples 2 to 5 have pither been solved before, or are so almple as to requiro no explanation. We shall, therefore, merely axpess the resprefive formula in the form of Rules.
(2) Problem.- To find two numbers, having given the sum of their s'quares, and the difference of their squares.

Rule.-Add the difference of the squares to the sum of the squares, multiply the sum by 2 and extract the square root; half the result will be the yreater number.

To find the less number, proceed in the same manner, except that the difference of the squares must be subtracted from their sum.

Ex. The sum of the squares of two numbers is $120 \frac{1}{2}$, and the difference of their squares 60 ; required the numbers.

$$
\text { Ans. } 9_{2}^{1} \text {, and } 5_{2}^{1} \text {. }
$$

(3) Problem.- Having given the difference of two numbers, and therr product, to find the numbers.

Role.- To the square of the difference add four times the product, extract the square root of the sum; add the result to the differenre, and also subtract the difference from it, then half the sum will be the greater number, and half the difference the less number.

Ex. The difference of two numbers is 11 , and their product 80 ; required the numbers.

Ans. 5 and 16.
(4) Problem.- To find a number, having given the sum of the number and its square root.

Rule.- To the given sum add $\frac{1}{4}$, and extract the square root, subtrast the result from the given sum increased by $\underset{2}{2}$, and the remain. der will be the required number.

Ex. The sum of a number and of its square root is 8_{4}^{3}; required the number.

Ans. $6 \frac{1}{4}$.
(5) Problem.-To find a number having given the difference of the number and its square root.

Rule.- To the given difference add $\frac{1}{4}$, extract the square root of the sum, and to the result add the given difference increased by $\frac{1}{2}$; the sum will be the required number.

Ex. The difference of a number and its square root is $8 \frac{3}{4}$; required the number.

Ans. $12 \frac{1}{4}$.
(6) $x+y=s$.

Squaring, $x^{2}+2 x y+y^{2}=s^{2}$,
but $x y==p$, therefore by transposing $2 x y$, or $2 p$,
$x^{2}+y^{2}=s^{2}-2 p$.
Cubing eq. (1) $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=s^{3}$,

$$
\text { or } x^{3}+3 x y(x+y)+y^{3}=s^{3},
$$

$$
\text { or } x^{3}+3 p s+y^{3}=s^{3} \text {. }
$$

$$
\therefore x^{3}+y^{3}=s^{3}-3 p s .
$$

Again, raising $x+y=s$, to the fourth power,
$x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}=s^{4}$,
but $4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}=4 x y\left(x^{2}+y^{2}\right)+6 p^{2}$

$$
=4 p\left(s^{2}-2 p\right)+6 p^{2}=4 p s^{2}-2 p^{2} .
$$

$$
\therefore x^{4}+y^{4}=s^{4}-4 p s^{2}+2 p^{2} .
$$

As an additional example, let the following problem be proposed:
Problem.-- To find two numbers having given their product, und the difference of their cubes.

Let x and y represent the numbers, then

$$
\begin{align*}
x^{3}-y^{3} & =a, \tag{1}\\
x y & =b . \tag{2}
\end{align*}
$$

Squaring equation (1), adding to the result 4 times the cube of (2) and extracting the square root, we have $x^{3}+y^{3}=a^{2}+4 b^{3}$.
Adding together equations (1) and (3), dividing by 2 and extracting the cube root, we find
$x=\sqrt[3]{ }\left\{\frac{1}{2}\left(a+\sqrt{a^{2}+4 b^{3}}\right)\right\}$.
Similarly, by subtracting equations (1) from (3), we find

$$
y=\sqrt[3]{ }\left\{\frac{1}{2}\left(\sqrt{a^{2}+4 b^{3}}-a\right)\right\} .
$$

These formulæ give the following
Rule.- To the square of the difference of the culbes, add four times the cule of thcir product, extract the square root of the sum; add the result to the difference of the cubes, also sultract the difference from it, then the cube root of one-half the sum will be the greater. number, and the cube root of one-half the difference the less number.
Ex. The difference of the cubes of two numbers is 604, and their product is 45 ; required the numbers.

Ans. 5 and 9.
In a similar manner specinl rules might be formed for the solytion of nuarly all the questions on page 214 of the Algebra.

SPECIALSOLUTIONSANDEXAMPLES.

Article 253.

(2) By adding $2 x$ to each member, the equation becomes
$x^{3}-x=2+2 x$, or $x\left(x^{2}-1\right)=2(x+1)$,
divide both members bv $x+1$,
$x(x-1)=2$.
Whence $x=-1$ or 2 .
(3) Transposing $\frac{4}{9}$ and $\frac{2}{3 x}$, the equation bocomes
$x^{2}-\frac{4}{9}=1+\frac{2}{3 x}$
or $\left(x+\frac{2}{3}\right)\left(x-\frac{2}{3}\right)=\frac{1}{x}\left(x+\frac{2}{3}\right)$,
$\therefore x+\frac{2}{3}=0$, or $x=-\frac{2}{3}$.
Also, $x-\frac{2}{3}=\frac{1}{x^{4}}$
Whence $x={ }_{3}^{1}(1 \pm \sqrt{10})$.
(4) Transpose 1 to the left member, then the cquano. .ram ge placed under the form

$$
\begin{aligned}
& \quad 2 x^{2}(x-1)+x^{2}-1=0, \\
& \text { or } \quad 2 x^{2}(x-1)+(x+1)(x-1)=0 \\
& \therefore \quad x-1=0 \text {, or } x=1 . \\
& \text { Also, } 2 x^{2}+x+1=0 . \\
& \text { Whence } x=\frac{1}{4}(-1 \pm \sqrt{-7}) \text {. }
\end{aligned}
$$

(5) The equation may be placed under the following form $x^{3}-2 x^{2}-x^{2}+2 x-x+2=0$, or $x^{2}(x-2)-x(x-2)-(x-2)=0$.
$\therefore x-2=0$, or $x=2$.
Also $x^{3}-m x-1=0$.
Whence $x=\frac{1}{2}(1 \pm \sqrt{5})$
(6) Multiplying both sides by x, we have

$$
x^{4}=6 x^{2}+9 x
$$

$$
\begin{aligned}
& \text { or, } x^{4}+3 x^{2}=9 x^{2}+9 x \\
& \quad x^{4}+3 x^{2}+\frac{9}{4}=9 x^{2}+9 x+\frac{9}{4}=9\left(x^{2}+x+\frac{1}{4},\right. \\
& x^{2}+\frac{3}{2}= \pm 3\left(x+\frac{1}{2}\right) \\
& x^{2}=3 x, \text { or } x=3, \\
& \text { or } x^{2}+3 x=-3 \text {, and } x=\frac{1}{2}(-3 \pm \sqrt{-3}) \\
& \text { Or, thus, } x^{3}=6 x+9 . \\
& \quad \therefore x^{3}-27=6 x-18=6(x-3) \text {, }
\end{aligned}
$$

dividing by $x-3, x^{2}+3 x+9=6$, from which the value 01 x is readily obtained.
(7) $x+7 x^{\frac{1}{3}}-22=(x-8)+7\left(x^{\frac{1}{3}}-2\right)=0$, dividing by $x^{\frac{1}{3}}-2$, we have

$$
\begin{aligned}
& x^{\frac{2}{3}}+2 x^{\frac{1}{3}}+4+7=0 \\
& x^{\frac{2}{3}}+2 x^{\frac{1}{3}}=-11 \\
& x^{\frac{2}{3}}+2 x^{\frac{1}{3}}+1=-10 \\
& x^{\frac{1}{3}}=-1 \pm \sqrt{-10} \\
& x=(-1 \pm \sqrt{-10})^{3}=29 \pm 7 \sqrt{-10} .
\end{aligned}
$$

From $x^{\frac{1}{3}}-2=0$, we have $x^{1}=2$ and $x=8$
(8) This equation may be written under the forn $x^{1}-81+{ }^{13}\left(x^{2}-9\right) x=0$, or $\left(x^{2}+9\right)\left(x^{2}-9\right)+{ }^{1}{ }_{3}^{3}\left(x^{2}-9\right) x=0$.
$\therefore x^{2}-9=0$, and $x=+3$, or -3 .
Also, $x^{2}+9+{ }_{3}^{13} x=0$.
Whence $x=\frac{1}{6}(-13 \pm \sqrt{-155})$.
(1c) Multiplying both members by x, and adding $x+1$ to each side, we have $x^{2}-2 x+1=4+4 \sqrt{x}+x$, extracting the square root, $x-1= \pm(2+\sqrt{x})$,
From the equation $x-1=2+\sqrt{x}$, by transposing \sqrt{x} and -1 , we have
$x-\sqrt{x}=3$.
Whence $\sqrt{x}={ }_{2}^{1} \pm 1 \frac{1}{2} \sqrt{13}$, and $x==_{2}^{1}(7 \pm \sqrt{ } 13)$

EQUATIONS OF THE SECOND DEGREE. 16%
From the equation $x-1=-2-\sqrt{x}$, similarly we find $\sqrt{x}=-1 \pm \frac{1}{2} \sqrt{-3}$, and $x=1(-1 \mp \sqrt{-3})$.
(11) Adding $\frac{1}{x^{2}}$ to each member, we have
$\frac{49 x^{2}}{4}-49+\frac{49}{x^{2}}=9+\frac{6}{x}+\frac{1}{x^{2}}$,
extracting the square root, $\frac{7 x}{2}-\frac{7}{2}= \pm\left(3+\frac{1}{x}\right)$.
From the equation $\frac{7 x}{2}-\frac{7}{x}=3+\frac{1}{x}$, by clearing of fractions transposing and reducing, we find
$x^{2}-{ }_{7}^{6} x={ }_{7}^{1 / 4}$.
Whence $x=2$, or $-\frac{8}{7}$.
From the equation $\frac{7 x}{2}-\frac{7}{x}=-3-\frac{1}{x}$, sinilarly we find
$x^{2}+\frac{6}{7} x=\frac{12}{7}$.
Whance $x=\frac{1}{7}(-3 \pm \sqrt{93})$.
(12) Transposing $-34 x$, and adding $\left(\frac{17 x}{4}\right)^{2}$ to each side, we have $x^{4}+\frac{17 x^{3}}{2}+\left(\frac{17 x}{4}\right)^{2}=16+34 x+\left(\frac{17 x}{4}\right)^{2}$, extracting the sq. root, $x^{2}+\frac{17 x}{4}= \pm\left(4+\frac{17 x}{4}\right)$.
From the equation $x^{2}+\frac{17 x}{4}=4+\frac{17 x}{4}$, we have $x^{2}=4$, and $x= \pm 2$.
From the equation $x^{2}+\frac{17 x}{4}=-4-\frac{17 x}{4}$, we have

$$
x^{2}+\frac{17 x}{2}=-4
$$

Whence $x=-8$, or -1.
(13) F'rst $-\left(3 x^{2}+x\right)=-3 x^{2}\left(1+\frac{1}{3 x}\right)$.

Dividing both mombers of the equation by x^{4}, and adding to each side $\frac{9}{4 x^{4}}$, we have

$$
\left(1+\frac{1}{3 x}\right)^{2}-\frac{3}{x^{2}}\left(1+\frac{1}{3 x}\right)+\frac{9}{4 x^{4}}=\frac{70}{x^{4}}+\frac{9}{4 x^{4}}=\frac{289}{4 x^{4}} .
$$

extracting the square root, $1+\frac{1}{3 x}-\frac{3}{2 x^{2}}= \pm \frac{17}{2 x^{2^{2}}}$,

$$
\text { hence } 1+\frac{1}{3 x}=+\frac{10}{x^{2}} \text {, or }-\frac{7}{x^{2}} \text {, }
$$

clearing of fractions, $x^{2}+\frac{1}{3} x=+10$, or -7 .
Whence $x=3$, or $-3 \frac{1}{3}$, or ${ }_{6}^{1}(-1 \pm \sqrt{-251})$.
(14) Multiplying by 2 , and adding $\frac{8 x}{36}+\frac{81}{36}$ to each side, we have $\frac{36}{x^{2}}+\frac{18}{x}+\frac{81}{36}=\frac{x^{2}}{36}+\frac{8 x}{36}+\frac{16}{36}$;
extracting the sq. root, $\frac{6}{x}+\frac{9}{6}= \pm\left(\frac{x}{6}+\frac{4}{6}\right)$.
Taking the positive sign, we have the equation $x^{2}-5 x=36$, from which $x=9$, or -4 .
From the equation $\frac{6}{x}+\frac{9}{6}=-\left(\frac{x}{6}+-\frac{4}{6}\right)$, we have the equation $x^{2}+13 x=-36$, from which $x=-9$, or -4 . \therefore the valucs of x are $+9,-9$, and -4 .
(15) Mult'plying both sides by 3 , transposing $\frac{841}{x^{2}}$ and $\frac{1}{x^{2}}$ and adding 1 to each side, we have
$81 x^{2}+18+\frac{1}{x^{2}}=\frac{841}{x^{2}}+\frac{232}{x}+16$,
extracting the square root, $9 x+\frac{1}{x}= \pm\left(\frac{29}{x}+4\right)$,
Taking the plus sign we find $x=2$, or $-\frac{14}{9}$;
taking the minus sign" " $x=\frac{1}{y}(-9 \pm \sqrt{-2(6 i)})$.
(19) Let $x+y=s$, and $x y=p$,
then $x^{2}+y^{2}=s^{2}-2 p$, and $x^{3}+y^{3}=s^{3}-3 s p$,
and by substitution the first equation becomes
$2 s^{3}+1=\left(s^{2}-2 p\right)\left(p+s^{3}-3 s p\right)$,
but $s=x+y=3$, hence by substitution the equation

EQUATIONS OF THE SECOND DEGREE. 1GJ
becomes $55=(9-2 p)(p+27-9 p)=243-126 p+16 p^{2}$,
or $16 p^{2}-126 p=-188$.
Whence $p=\frac{47}{8}$ or 2 .
Taking $x+y=3$, and $x y=2$, we readily find $x=2$, and $y=1$.
$(20$ Dividing both sides of the equation by $1+x$, we have
$1-x+x^{2}=a(1+x)^{2}=a+2 a x+a x^{2}$, transposing and reducing, $(a-1) x^{2}+(2 a+1) x=1-a$ or $x^{2}+\frac{2 a+1}{a-1} x=\frac{1-a}{a-1}=-\frac{a-}{a-1}=-1$.
$x^{2}+\frac{2 a+1}{a-1} x+\frac{(2 a+1)^{2}}{4(a-1)^{2}}=\frac{(2 a+1)^{2}}{4(a-1)^{2}}-1=\frac{12 a-3}{4(a-1)^{2}}$. $x+\frac{2 a+1}{2(a-1)}=\frac{ \pm \sqrt{12 a-3}}{2(a-1)}$
$x=\frac{-2 a-1 \pm \sqrt{12 a-3}}{2(a-1)}=\frac{1+2 a \pm \sqrt{12 a-3}}{2(1-a)}$.
Since both members of the equation are divisible bv $1+x$, therefore $1+x=0$, and $x=-1$.
(21) $\frac{a}{x^{2}}-\frac{1}{x} \sqrt{x-2 \alpha-\frac{a}{x}}=1$.

Transposing, multiplying by x, and arranging the terms under the radical, we have
${ }_{x}-x=\sqrt{-\left(\frac{a}{x}-x\right)-2 a}$,
$\left(\frac{a}{x}-x\right)^{2}+\left(\frac{a}{x}-x\right)=-2 a$, by squaring and transposing.
Putting $\frac{a}{x}-x=$ a single unknown quantity, and finding its value, we have
$\frac{a}{x}-x=-\frac{1}{2} \pm \frac{1}{2} \sqrt{1-8 a}=b$,
whence $a-x^{2}=b x$, or $x^{2}+b x=a$,
$x=-\frac{b}{2} \pm \frac{1}{2} \sqrt{b^{2}+4 a}$.

Substituting the value of b, we find

$$
\begin{aligned}
& b^{2}=\frac{1}{2}+\frac{1}{2} \sqrt{1-8 a}-2 a \\
& b^{2}+4 a=\frac{1}{4}(2+2 \sqrt{1-8 a}+8 a) . \\
& \left.\therefore \quad x=\frac{1}{2}\left(+\frac{1}{2} \pm \frac{1}{2} \sqrt{1-8 a}\right) \pm \frac{1}{2} \sqrt{\frac{1}{4}(2+2 \sqrt{1-8 a}+8 a}\right) \\
& \quad=\frac{1}{4}\{1 \pm \sqrt{1-8 a} \pm \sqrt{2 \pm 2 \sqrt{1-8 a}+8 a}\} .
\end{aligned}
$$

(22) Let $x+y=s$, and $x y=p$, then the equations become

$$
\begin{align*}
& s+p s+p^{2}=85, \tag{1}\\
& p+s^{2}+p s=97, \tag{2}\\
\text { adding } & s^{2}+2 p s+p^{2}+p+s=182, \\
\text { or, } & (s+p)^{2}+(p+s)=182 .
\end{align*}
$$

Whence $s+p=+13$, or -14 .
Taking $s+p=13, s=13-p$, and substituting this in (1) $13-p+p(13-p)+p^{2}=85$, whence $p=6$.
$\therefore x+y=7$, and $x y=6$, from which we find $x=6$ or and $y=1$ or 6 .
(23)

$$
\begin{aligned}
& \frac{2 c^{2}}{d^{2}}+\frac{a c}{d}-(a-b)(2 c+a d) \frac{x}{d}=(a+b) \frac{c x}{d}-\left(a^{2}-b^{2}\right) x^{2} . \\
& 2 c^{2}+a c d-(a-b)(2 c+a d) d x=(a+b) c d x-\left(a^{2}-b^{2}\right) d^{2} x^{2}, \\
& \left(a^{2}-b^{2}\right) d^{2} x^{2}-2 a c d x-a^{2} d^{2} x+2 b c d x+a b d^{2} x-a c d x-b c d x \\
& =-a c d^{2}-2 c^{2}, \\
& \left(a^{2}-b^{2}\right) d^{2} x^{2}-3 a c d x+b c d x-a^{2} d^{2} x+a b d^{2} x=-a c d-2 c^{2} \\
& x^{2}-\frac{3 a c d-b c d+a^{2} d^{2}-a b d^{2}}{\left(a^{2}-b^{2}\right) d^{2}} x=-\frac{a c d+2 c^{2}}{\left(a^{2}-b^{2}\right) d^{2}} \\
& x^{2}-\frac{(3 a-b) c d+(a-b) a d^{2}}{\left(a^{2}-b^{2}\right) d^{2}} x \\
& +\frac{(3 a-b)^{2} c^{2} d^{2}+(a-b)^{2} a^{2} d^{4}+2 a c d^{3}(3 a-b)(a-b)}{4\left(a^{2}-b^{2}\right)^{2} d^{4}} \\
& =\frac{-4 a^{3} c d^{3}-8 a^{2} c^{2} d^{2}+4 a b^{2} c d^{3}+8 b^{2} c^{2} d 2}{4\left(a^{2}-b^{2}\right)^{2} d^{4}} \\
& +\frac{(3 a-b)^{2} c^{2} d^{2}+(a-l)^{2} a^{2} d^{4}+2 a c d^{3}(3 a-b)(a-b)}{4\left(a^{2} b^{2}\right)^{2} d^{4}}, \\
& =\frac{(a-3 b)^{2} c^{2} d^{2}+(a-b)^{2} a^{2} d^{4}+2 a c d^{3}(a-3 b)(a-b),}{4\left(a^{2}-b^{2}\right)^{2} d^{4}},
\end{aligned}
$$

EQUATIONS OF THESECOND DEGREE. 1 (77

$$
\begin{aligned}
& x-\frac{(3 a-b) c a+(a-b) a d^{2}}{2\left(a^{2}-b^{2}\right) d^{2}}= \pm \frac{(a-3 b) c d+(a-b) a d^{2}}{2\left(a^{2}-b^{2}\right) d^{2}}, \\
& x=\frac{(3 a-b) c d+(a-b) a d^{2}}{2\left(a^{2}-b^{2}\right) d^{2}},(a-3 b) c d+(a-b) a d^{2} \\
& =\frac{4(a-b) c d+2(a-b) a d^{2}}{\left.2\left(a^{2}-b^{2}\right) d^{2}-b^{2}\right) d^{2}}=\frac{2 c+a d}{(a+b) d} \\
& \text { or }=\frac{2(a+b) c d}{2\left(a^{2}-b^{2}\right) d^{2}}=\frac{c}{(a-b) d^{2}} .
\end{aligned}
$$

(24) $\left(x^{3}+1\right)\left(x^{2}+1\right)(x+1)=30 x^{3}$,
or, $\left(x^{2}+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)\left(1+\frac{1}{x}\right)=30$,
or, $\left(x^{2}+\frac{1}{x^{2}}+x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=30$,
Let $x+\frac{1}{x}=s ; x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2=s^{2}-\mathbf{2}$
$\left(s^{2}-2+s\right) s=30$, or $s^{3}-2 s+s^{2}=30$,
$s^{4}+s^{3}-2 s^{2}=30 s$,
$s^{4}+s^{3}+\frac{s^{2}}{4}=\frac{9 s^{2}}{4}+30 s$,
$\left(s^{2}+\frac{s}{2}\right)^{2}=\frac{9 s^{2}}{4}+30 s$
$\left(s^{2}+\frac{s}{2}\right)^{2}+10\left(s^{2}+\frac{s}{2}\right)=\frac{49 s^{2}}{4}+35 s$,
$\left(s^{2}+\frac{s}{2}\right)^{2}+10\left(s^{2}+\frac{s}{2}\right)+25=\frac{49 s^{2}}{4}+35 s+26$
$s^{2}+\frac{\Delta}{2}+5=\frac{7 s}{2}+5$
$s^{2}=3 s$, and $s=3=x+\frac{1}{x}$,
$x+\frac{1}{x}=3$,
Whence $x=\frac{1}{2}(3 \pm \sqrt{5})$.
(25) $x^{3}+y^{3}=35$, and $x^{2}+y^{2}=13$,

Let $x+y=v$,

$$
\begin{equation*}
x y=z, \tag{3}
\end{equation*}
$$

then $v^{3}-3 v z=35$
and $v^{2}-2 z=1$ s,

$$
\begin{aligned}
& 2 v^{3}-6 v z=70 \text {, (5) by multiplying (3) by } 2 \\
& 3 v^{3}-6 v z=39 v \text {, } \\
& \text { (6) by multiplying (4) by } 3 v \\
& v^{3}=39 v-70 \text {, } \\
& \text { by subtracting (5) from : } \uparrow \\
& v^{3}-39 v=-70 \text {, } \\
& v^{4}-39 v^{2}=-70 v \text {, } \\
& 25 v^{2}=25 v^{2} \text {, } \\
& \overline{v^{4}-14 v^{2}=25 v^{2}}-70 v \text {, } \\
& v^{4}-14 v^{2}+49=25 v^{2}-70 v+49 \text {, } \\
& v^{2}-7= \pm(5 v-7) \text {, } \\
& v^{2}=5 v \text {, and } v=5 \text {, } \\
& \text { or } v^{2}+5 v=14 \text {, and } v=+2 \text {, or }-7 \text {; } \\
& \text { bat } v^{2}-2 z=13 \text {, } \\
& 2 \text { ว丂- } 2 z=13 \text {, and } z=6 \text {, } \\
& \text { or, } 4-2 z \doteq 13 \text {, and } z=-\frac{9}{2} \text {, } \\
& \text { or, } 49-2 z=13 \text {, and } z=18 \text {. }
\end{aligned}
$$

From $x+y=5, x=3$, or 2 ,

$$
x y=6,5 y=2 \text {, or } 3 \text {. }
$$

From $x+y=2, \quad\}^{x=1 \pm \frac{1}{2} \sqrt{22}}$

$$
x y=-\frac{9}{2}, y=1 \pm \frac{1}{2} \sqrt{22}
$$

From $x+y=-7, \quad x=-\frac{7}{2} \pm \frac{1}{2} \sqrt{-23}$

$$
x y=18,\} y=-\frac{7}{2} \mp \frac{1}{2} \sqrt{-23},
$$

(26) Let $x y z=p$, and $x+y+z=s$, then the equations become

$$
\begin{array}{r}
\frac{p}{s-z}=a, \\
\frac{p}{s-y}=b, \\
\frac{p}{s-x}=c \\
\text { buence } z=s-\frac{p}{a}, \\
y=s-\frac{p}{b} \\
x=s-\frac{p}{c}, \tag{A}
\end{array}
$$

adading, $x+y+z$, or $s=3 s-p\left(\frac{1}{a}+\frac{1}{b}+\frac{q}{c}\right)$.
Whence $s=\frac{(a b+a c+b c) p}{2 a b c}$.
Substituting this value of s in equations (4), (5), and (6),
we get $z=\frac{(a b+a c-b c) p}{2 a b c}$,
$y=\frac{(a b+b c-a c) p}{2 a b c}$,
$x=\frac{(a c+b c-a b) p}{2 a b c}$.
Multiplying equations (7), (8), and (9) together: we find
$x y z$, or $p=\frac{(a c+b c-a b)(a b+b c-a c)(a b+a c-b c) p^{3}}{8 a^{3} b^{3} c^{3}}$, whence $p=2 a b c \sqrt{ }\left\{\frac{2 a b c}{(a c+b c-a b)(a b+b c-a c)(a b+a c-b c)}\right\}$,

Substituting this value of p in equations (7), (8), and (9),

$$
\text { we get } \begin{aligned}
x & =\int\left\{\frac{2 a l i c(a c+b c-a b)}{(a b+a c-b c)(a b+b c-a c)}\right\} \\
y & \left.=\sqrt{\left\{\frac{2 a b c(a b+b c-a c)}{(a c+b c-a b)(a b+a c-b c)}\right.}\right\}, \\
z & \left.=\sqrt{\left\{\frac{2 a b c(a b+a c-b c)}{(a c+b c-a b)(a b+b c-a c)}\right.}\right\}
\end{aligned}
$$

(27) Dividing both members of (1) by x^{3}, and both members of (2) by y^{3}, we have

$$
\begin{gather*}
\left(x^{3}+\frac{1}{x^{3}}\right) y=y^{2}+1, \\
\text { or, } x^{3}+\frac{1}{x^{3}}=y+\frac{1}{y}, \tag{3}\\
\text { and } y^{3}+\frac{1}{y^{3}}=9\left(x+\frac{1}{x}\right), \\
\text { or, } \frac{1}{3}\left(y^{3}+\frac{1}{y^{3}}\right)=3\left(x+\frac{1}{x}\right) ; \\
\cdot \frac{1}{3}\left(y^{3}+\frac{1}{y^{3}}\right)+y+\frac{1}{y}=x^{3}+3\left(x+\frac{1}{x}\right)+\frac{1}{x^{3}} \\
y^{3}+\frac{1}{y^{3}}+3\left(y+\frac{1}{y}\right)=3\left(x+\frac{1}{x}\right)^{3},
\end{gather*}
$$

$$
\therefore y+\frac{1}{y}=\left(x+\frac{1}{x}\right) \sqrt[3]{3}, \text { by extracting the cube }
$$

root.
And $x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right) \sqrt[3]{3}$ by (3),
dividing both members by $x+\frac{1}{x}$, we have

$$
\begin{aligned}
x^{2}-1+\frac{1}{x^{2}} & =\sqrt[3]{3} \\
x^{2}+2+\frac{1}{x^{2}} & =\sqrt[3]{3}+3, \text { by adding }+3 \\
x+\frac{1}{x} & =\sqrt{\sqrt[3]{3}+3}, \text { by extracting the square }
\end{aligned}
$$

root.
Similarly, $x-\frac{1}{x}=\sqrt{\sqrt[3]{3}-1}$, by subtracting 1 . $\therefore x=\frac{1}{2}\{\sqrt{\sqrt[3]{\sqrt[3]{3}+3}}+\sqrt{\sqrt[3]{\sqrt[3]{3}-1}}\}$. But $y+\frac{1}{y}=\left(x+\frac{1}{x}\right) \sqrt[3]{3}=\sqrt[3]{3} \sqrt{\sqrt[3]{3}+3}$. Whence $y=\frac{1}{2}\{\sqrt[3]{3} \cdot \sqrt{\sqrt[3]{3}+3} \pm \sqrt{3 \sqrt[3]{9}-1}\}$.

RATIO, PROPORTION, AND PROGRESSIONS.

FXERGISESIN RATIOAND PROPORTION

Article 278.

Note.- The solutions of these exercises are given, not because they are difficult, but because many of them are of a character not hereto fire presented to the notice of Teachers.
(1) 3 to $4=\frac{4}{3} ; 3^{2}$ to $4^{2}=\frac{16}{9} ; \frac{4}{3}=\frac{1}{9}$, and since $\frac{16}{9}$ is greate than $\frac{12}{9}$, the ratio of 3^{2} to 4^{2} is greater than the ratio on 3 to 4 .
(2) Duplicate ratio of 2 to 3 is 2^{2} to $3^{2}=4$ to 9 , triplicate ratio of 3 to 4 is 3^{3} to $4^{3}=27$ to 64 , subduplicate ratio of 64 to 36 is $\sqrt{64}$ to $\sqrt{36}=8$ to 6 , $4 \times 27 \times 8$ to $9 \times 64 \times 6=864$ to $3456=1$ to 4 ;
Or, by canceling thus,
$\frac{\phi \times \phi 4 \times 6}{4 \times 2 \%}=\frac{\phi \times \phi}{4 \times \phi}=\frac{2 \times 2}{1}=\frac{4}{1}=1$ to 4.
(3) Let $x=$ the quantity, then
$\frac{n+x}{m+x}=\frac{q}{p}$,
whence $n p+p x=m q+q x$, and $x=\frac{m q-n p}{p-q}$.
(4) $\frac{b}{a}=2 \frac{2}{3}=\frac{8}{3}$; dividing both terms of each frartion by 2
$\frac{b}{2 a}=\frac{4}{3}=1 \frac{1}{3}$.
Multiplying both terms of the fractions $\frac{b}{a}=\frac{8}{3}$, by $\frac{4}{3}$ we have $\frac{4 b}{3 a}=\frac{8}{3} \times \frac{4}{3}=\frac{32}{9}=3 \frac{5}{9}$.
(5) $\frac{7 b}{a}=5 \frac{1}{4}=\frac{21}{4}$; dividing both fractions by,$\frac{b}{a}=\frac{3}{4}$.

Multiplying both terms of the fractions $\frac{b}{a}-\frac{3}{1}$, by $\frac{4}{5}$ we have $\frac{b}{a} \times \frac{4}{5}=\frac{3}{4} \times \frac{4}{5}$, or $\frac{4 b}{5 a}=\frac{3}{5}$.
(6)
$\frac{b}{a}=1 \frac{2}{3}=\frac{5}{3} ; \therefore \frac{b}{a+b}=\frac{5}{3+5}$, or $\frac{b}{a+b}=\frac{5}{8} ;$
Since $\frac{b}{a}=\frac{5}{3} ; \therefore \frac{a}{b}=\frac{3}{5}$, and $\frac{a}{b-a}=\frac{3}{5-3}=\frac{3}{2}$
(7) $\frac{n}{m}=\frac{4}{7}$, and $\frac{m}{n}=\frac{7}{4}$, also $4 m=7 n$, and $m=\frac{7 n}{4}$.
$m-n=\frac{7 n}{4}-n=\frac{3 n}{4} ;$
dividing $6 m$ by each member of this equality
$\frac{6 n}{m-n}=6 m \div \frac{3 n}{4}=\frac{8 m}{n}=8 \times \frac{7}{4}=14$;
Also, dividing $5 n$ by each member, we have
$\frac{5 n}{m-n}=5 n \times \frac{4}{3 n}=\frac{20 n}{3 n}=6 \frac{2}{3}$.
(8) $\frac{2 m+3 n}{m}=2 \frac{3}{5}=\frac{13}{5}$;
clearing of fractions $10 m+15 n=13 m$, or $m=5 n$,
and $\frac{m}{m}=\frac{1}{5}$, or 5 to 1 .
(9) $\frac{n}{m}=\frac{7}{2}$, and $m=\frac{2}{7} n$, also $12 m=\frac{24 n}{7}$;
dividing $m+n$ by both members of this equality,
$\frac{m+n}{12 m}=(m+n) \div \frac{24 n}{7}=\frac{7 m+7 n}{24 n}=\frac{2 n+7 n}{24 n}=\frac{9 n}{24 n}=\frac{3}{8}$.
Also, since $n=3 \frac{1}{2} m, 12 n=42 m$;
dividing $n-2 m$ by both members of this equality, and
substituting the value of n in the second member, we have
$\frac{n-2 m}{12 n}=\frac{n-2 m}{42 m}=\frac{3 \frac{1}{2} m-2 m}{42 m}=\frac{3 m}{84 m}=1$.
(10) $\frac{7 x-5 y}{5 y-8 x}=6$, or $7 x-5 y=30 y-48 x$,

$$
55 x=35 y
$$

$$
11 x=7 y
$$

$$
\frac{11}{7}=\frac{y}{x}, \text { or } x: y: 7: 11
$$

(11) $a b=a^{2}-x^{2}$, or $a \times b=(a+x)(a-x)$;
whence (Art. 268), $a: a+x:: a-x: b$.
(12) $x^{2}+y^{2}=2 a x$, or $y^{2}=2 a x-x^{2}$,

$$
\text { or } y \times y=x(2 a-x)
$$

whence (Art. 268), $x: y:: y: 2 a-x$.
(13) Let $x=$ the number, then
$a+x: b+x:: c+x: d+x ;$
$\therefore(a+x)(d+x)=(b+x)(c+x)$.
or, $a d+a x+d x+x^{2}=b c+b x+c x+x^{2}$,
or, $a x-b x-c x+d x=b c-a d$, or, $\quad(a-b-c+d) x=b c-a d$,

$$
x=\frac{b c-a d}{a-b-c+d} .
$$

The pupil should verify this answer by using numbers.
(14) Let a, b, c, and d, be four quantities in proportion, and if possible, let x be a number that being added to each wil. make the resulting four quantities proportionals; then $a+x: b+x:: c+x: d+x$. $\therefore(a+x)(d+x)=(b+x)(c+x)$, or $a d+a x+d x+x^{2}=b c+b x+c x+x^{2}$; whence $x=\frac{b c-a d}{a-b-c+d}$.
But since u, b, c, d, are in proportion (Art. 267), $a d=b c$, $\therefore x=\frac{b c-b c}{a-b-c+d}=\frac{0}{a-b-c+d}=0$, (Art. 135);
hence there is no number which being added to each will leave the resulting quantities proportional.
i15) Cubing cach term of the secoud proportion, we have $a^{3}: b^{3}:: c+x: d+y$,
but $x: y:: a^{3}: b^{3}$.
$\therefore x: y:: c+x: d+y$, by Art. 272 .
Placing the product of the means equal to the product of the extremes, and omitting $x y$ on each side, we find $x=\frac{c y}{d}$.
(16) Let $m a$ and $m b$ be equal multiples of two quantities, τ and b; then since $\frac{m b}{m a}=\frac{b}{a}$, we have (Art. 263),
$m a: m b:: a: b$
(17) Let $\frac{a}{n}$ and $\frac{b}{n}$ be like parts of two quantities, a and b; then $\frac{b}{n} \div \frac{a}{n}=\frac{b}{n} \times \frac{n}{a}=\frac{b}{a}$ is equal to $\frac{b}{a}$, and we have (Art. 263), $\frac{a}{n}: \frac{b}{n}:: a: b$.
(18) Let $a: b:: c: d$, then $m a$ and $m c$ will be equal multiples of the antecedents, and $n b$ and $n d$ equal multiples of the consonants ; then it is required to prove that

$$
\begin{equation*}
m a: m c:: a: c \tag{1}
\end{equation*}
$$

and $n b: n d:: a: c$.
First, $\frac{m c}{m a}=\frac{c}{a}$ is equal to $\frac{c}{a}$, hence (1) is a true proportion Second, $\frac{n d}{n b}=\frac{d}{b}$, but since $a: b:: c: d$, we have $d=\frac{b c}{a}$ (Art. 267), hence $\frac{d}{b}=\frac{b c}{a} \div b=\frac{b c}{a} \times \frac{1}{b}=\frac{c}{a}$,
which is the ratio of a to c, therefore (2) is a true propor tion. (Art. 263.)
(1a) Since $a: b:: c: d, \therefore \frac{b}{a}=\frac{d}{c}$ (Art. 263);
but $\frac{m b}{m a}=\frac{b}{a}$, and $\frac{n d}{n c}=\frac{d}{c}$, therefore
$m a: m b:=n c: n d$.
Again, if wo take the equation $\frac{b}{a}=\frac{d}{c}$, and multiply beth sides by $\frac{n}{m}$, we have $\frac{n b}{m a}=\frac{n d}{m c}$, which gives the proportion $m a: n b:: m c: n d,($ Art. 263).
(20) Since $a: b:: c: a, \therefore \frac{b}{a}=\frac{d}{c}$, (Art. 263);
but $\frac{b}{m} \div \frac{a}{m}=\frac{b}{m} \times \frac{m}{a}=\frac{b}{a}$, and $\frac{d}{n} \div \frac{c}{n}=\frac{d}{n} \times \frac{n}{c}=\frac{d}{c}$, $\therefore \frac{a}{m}: \frac{b}{m}::_{n}^{c}: \frac{d}{n}$.
Again, if we take the equation $\frac{b}{a}=\frac{d}{c}$, and nultiply both members by $\frac{m}{n}$, we have $\frac{m b}{n a}=\frac{m d}{n c}$;
but $\frac{m b}{n a}=\frac{b}{n} \div \frac{a}{m}$, and $\frac{m d}{n c}=\frac{d}{n} \div \frac{c}{m}$; that is, the ratio of $\frac{a}{m}$ to $\frac{b}{n}$ is equal to the ratio of $\frac{c}{m}$ to $\frac{d}{n}$, hence $\frac{a}{m}: \frac{b}{n}:: \frac{c}{m}: \frac{d}{n}$.
(21) Let $a: b:: c: d$,
and $e: f:: g: h$,
from (2) by Art. 271, $f: e:: h: g$,
multiplying together the corresponding terms of (1) and (3) (Art. 277), we have
af: be: :ch: dg,
whence $\frac{b e}{a f}=\frac{d g}{c h}$,
but $\frac{b e}{a f}=\frac{b}{f} \times \frac{e}{a}=\frac{b}{f} \div \frac{a}{e}$, and $\frac{d g}{c h}=\frac{d}{\bar{h}} \times \frac{g}{c}=\frac{d}{h} \div \frac{c}{g}$;
$\therefore \frac{b}{f} \div \frac{a}{e}=\frac{d}{h} \div \frac{c}{g}$,
whence (Art. 263), $\frac{a}{e}: \frac{b}{f}:: \frac{c}{g}: \frac{d}{h}$.
(Q2) Let us take the two proportions

$$
\begin{equation*}
a: b:: c: d \tag{1}
\end{equation*}
$$

and $m a: e:: m c: f$,
in which the antecedents are proportional, since $a: c:: m a: m c$; then it is required to prove that $b: d:: e: f$.
By alternation (Art. 270), proportions (1) and (2) give

$$
a: c:: b: d, \text { whence } \frac{c}{a}=\frac{d}{b},
$$

and $m a: m c:: e: f$, whence $\frac{m c}{m a}$, or $\frac{c}{a}=\frac{f}{e}$;
$\therefore \frac{d}{b}=\frac{f}{e}$, or $b: d:: e: f$.
(23) Let a and b be the antecedent and consequent of a ratio, and n any given number, then it is required to prove that $a \pm \frac{a}{n}: b \pm \frac{b}{n}:: a: b$.
$a \pm \frac{a}{n}=\frac{n a \pm a}{n}=a\left(\frac{n \pm 1}{n}\right), b \pm \frac{-}{n}=\frac{n b \pm b}{n}=b\left(\frac{n \pm 1}{n}\right) ;$
\therefore the ratio of the first term to the recond is $b\left(\frac{n \pm 1}{n}\right)$
$\div a\left(\frac{n \pm 1}{n}\right)=\frac{b}{a}$, and since this is the same as the ratio
of the third tern to the fourth, the proportion is rus (Art. 263.)
(24) Developing $(a+b)^{2}$ and $(a-b)^{2}$, we have $a^{2}+2 a b+b^{2}: a^{2}-2 a b+b^{2}:: b+c: b-c$, whence (Art. 275), $2 a^{2}+2 b^{2}: 4 a b:: 2 b: 2 c$, or (Art. 267), $2 c\left(2 a^{2}+2 b^{2}\right)=4 a b \times 2 b=8 a b^{2}$,

$$
\begin{aligned}
& \text { or, } 4 a^{2} c+4 b^{2} c=8 a b^{2}, \\
& \text { or, } a^{2} c+b^{2} c=2 a b^{2}, \\
& \text { or, } a^{2} c=2 a b^{2}-b^{2} c=b^{2}(2 a-c) .
\end{aligned}
$$

\therefore (Art. 268), $a^{2}: b^{2}:: 2 a-c: c$;
by extracting the square root of each term (Art. 276), we have $a: b:: \sqrt{2 a-c}: \sqrt{c}$.

Article 279.

(3) By Art. 275, the proportion gives
$2 x: 2 y:: 4: 2$, or $4 x=8 y$, or $x=2 y$.
By substituting the value of x in the equation $x^{3}-y^{3}=56$ we have $(2 y)^{3}-y^{3}=56$, reducing, $\quad 7 y^{3}=56$; whence $y=2$, and $x=4$.
(4) From Art. 274, the proportion gives

$$
\begin{aligned}
& x-(x-y): x:: 6-5: 6, \\
& \quad \text { or, } y: x:: 1 \quad: 6,
\end{aligned}
$$

whence (Art. 267), $x=6 y$.
By substitution the equation becomes $6 y \times y^{2}=384$;
whence $y=4$, and $x=24$.
(5) By Division (Art. 274), the proportion gives
$x+y-x: x:: 7-5: 5$,

$$
\text { or, } y: x:: 2: 5
$$

whence $x=\frac{5 y}{2}$.
Bv substitution the equation hecomes $\frac{5 y^{2}}{2}+y^{2}=126$, whenes $y=-1-6$, and $x= \pm 15$.
6) Extracting the square root of each term of the proportion (Art. 276), we have

$$
x+y: x-y:: 8: 1
$$

(Art. 274), 2x: 2y ::9:7;
whence $x=\frac{9 y}{7}$;
substituting this value of x in the equation, we have $\frac{9 y^{2}}{7}=63$, whence $y= \pm 7$, and $x= \pm 9$.
(7) Writing b in the form $\frac{b}{1}$, the equation gives the proportion
$a+\sqrt{a^{2}-x^{2}}: a-\sqrt{a^{2}-x^{2}}: 1: b$,
(Art. 275), $2 a: 2 \sqrt{a^{2}-x^{2}}:: b+1: 1-b$,

$$
\text { ur, } u: \sqrt{a^{2}-x^{2}}:: b+1: 1-b,
$$

(Art. 276), $a^{2}: \quad a^{2}-x^{2}::(b+1)^{2}:(1-b)^{2}$.
But, by means of Art. 274, it may easily be shown that in any proportion the first term is to the difference of th first and second, as the third term is to the difference or the third and fourth; hence,

$$
\begin{aligned}
& \quad a^{2}: a^{2}-\left(a^{2}-x^{2}\right)::(b+-1)^{2}:(b+1)^{2}-(b-1)^{2} \\
& \text { or, } a^{2}: x^{2}::(b+1)^{2}: 4 b, \\
& \text { whence } x^{2}(b+1)^{2}=4 a^{2} b, \\
& \\
& x^{2}=\frac{4 a^{2} b}{(b+1)^{2}}, \\
& \\
& x= \pm \frac{2 a \sqrt{b}}{b+1} .
\end{aligned}
$$

.8) The equation gives the proportion
$\sqrt{a+x}+\sqrt{a-x}: \sqrt{a+x}-\sqrt{a-x}: b: 1$,
(Art. 275), $2 \sqrt{a+x}: 2 \sqrt{a-x}:: b+1: b-1$,
(Art. 276), $a+x: \quad a-x::(b+1)^{2}:(b-1)^{2}$,
(Art. 275), $2 a: \quad 2 x:: 23^{2}+2: 4 b$,

$$
\text { or, } a: \quad x:: b^{2}+1: 2 b,
$$

whence $x=\frac{2 a b}{b^{2}+1}$.
(9) The equation gives the proportion
$a+x+\sqrt{2 a x+x^{2}} a+x: b: 1$,
(Art. 274),

$$
\sqrt{2 a x-1-x^{2}}: a-1-x:: b-1: 1
$$

(Art. 271), $a+x: \sqrt{2 a x+x^{2}}:: 1: b-1$,
(Art. 276), $\quad a^{2}+2 a x+x^{2}: 2 a x+x^{2}:: 1: b^{2}-2 b+1$,
(Art. 274, Note), $a^{2}+2 a x+x^{2}: \quad a^{2}:: 1: 2 b-b^{2}$,
(Art. 276),

$$
a+x \quad:
$$

$$
a: \cdot 1: \pm \sqrt{2 b-b^{2}}
$$

(Art. 267), $\pm(a+x) \sqrt{2 b-b^{2}}=a$,

$$
\pm x \sqrt{2 b-b^{2}}=a \mp a \sqrt{2 b-b^{2}}
$$

$$
x=\frac{a \mp a \sqrt{2 b-b^{2}}}{ \pm \sqrt{2 b-b^{2}}},
$$

$$
=a\left(\frac{1 \mp \sqrt{2 b-b^{2}}}{ \pm \sqrt{2 b-b^{2}}}\right)
$$

(10) Let $x+y=$ the greater number, and $x-y=$ the less,
then $(x+y)(x-y)=x^{2}-y^{2}=320$,
and $(x+y)^{3}-(x-y)^{3}=6 x^{2} y+2 y^{3}$; also,
$x+y-(x-y)=2 y$, and $(2 y)^{3}=8 y^{3}$.
$\therefore 6 x^{2} y+2 y^{3}: 8 y^{3}:: 61: 1$,
or, by dividing the first and second terms by $2 y$,
$3 x^{2}+y^{2}: 4 y^{2}: 61: 1$,
(Art. 267), $3 x^{2}+y^{2}=244 y^{2}$;
whence $3 x^{2}=243 y^{2}$, and $x= \pm 9 y$.
Substituting the value of x^{2} in the equation
$x^{2}-y^{2}=320$, we have
$8 \mathrm{I} y^{2}-y^{2}=320$;
whence $y= \pm 2$, and $x= \pm 18$.
$\therefore x+y= \pm 20$,
$x-y= \pm 16$.
Article 280. Ex. 2. Let $x=$ the number, then
$a: x:: a-b: c-x$,
(Art. 267), $a x-b x=a c-a x$

$$
\begin{aligned}
2 a x-b x & =a c, \\
x(2 a-b) & =a c, \\
x & =\frac{a c}{2 a-b} .
\end{aligned}
$$

VARIATION

Article 290

Note.- The solutions to these examples are given for the same reason as those following Article 278, not because thev are difficult, but because to many Teachers they will be new.
B) Since y varies as x, let $y=m x$, then since .- $x=2, y=1 a$, we have $4 a=2 m$, or $m=2 a$,
$\cdot y=2 a x$
(4) Since y varies as $\frac{1}{x}$, let $y=\frac{m}{x}$, then since if $x=\frac{1}{2}, y=8$ we have $8=\frac{m}{\frac{1}{2}}$ or $m=4$.
$\therefore y=\frac{4}{x}$.
5) Let $y^{2}=m\left(a^{2}-x^{2}\right)$, then

$$
\left(\frac{b^{2}}{a}\right)^{2}=m\left[a^{2}-\left(a^{2}-b^{2}\right)\right]
$$

$\frac{b^{4}}{a^{2}}=m b^{2}$, or $m=\frac{b^{2}}{a^{2}}$;
$\therefore y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)$, and $y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$.
(6) Here we have $y=v+z$, where $v \propto x$, and $z \propto \frac{1}{x^{2}}$

Let $v=m x$, and $z=\frac{n}{x^{2}}$, then $y=m x+\frac{n}{x^{2}}$.
Since $y=6$ when $x=1$, we have $6=m+n$,
and " $\quad y=5$ when $x=2, " \quad$ " $\quad 5=2 m+\frac{n}{4}$.
From equations (1) and (2) we readily find $m=2$ ana $n=4$, hence $y=2 x+\frac{4}{x^{2}}$.
(7) Here we have $y=a+v+z$, where a is constant, $v \dot{\propto} x$, and $z \propto x^{2}$. Let $v=m x$, and $z=n x^{2}$
then $y=a+m x+n x^{2}$.

- $6=a+m+n$,

$$
\begin{align*}
& 11=a+2 m+4 n \tag{2}\\
& 18=a+3 m+9 n \tag{3}
\end{align*}
$$

From the equations (1), (2), (3), by elimination (krt. 158 h we find $a=3, m=2 n=1$. hence,
$y=3+2 x+x^{2}$.
(8) Since sct ${ }^{2}$ when. is constant; and $s \alpha$, when t is constant, therefore, when both rar* is evident from Ar 283 (3), that $s \propto f y$;
then let $s=m / l^{2}$;
but since $2 s=f$, or $s=f$ when $t=1$, therefore
$\frac{1}{x} f=m f 1^{2}$,
whence $m=-2$,
and $s=\frac{1}{2} f l^{2}$.
(9) Since $r \propto x$, let $r=n x$,
and since $s \propto \sqrt{x}$, let $s=n \sqrt{x}$.
then $y=m x+n \sqrt{x}$;
hence, by substituting the corrosponding values of y and x, we have

$$
\begin{align*}
5 & =4 m+2 n \tag{1}\\
10 & =9 m+3 n . \tag{2}
\end{align*}
$$

From these equations we find $m=\frac{5}{6}$ and $n=\frac{5}{6}$,
hence $y=\frac{5}{6} x+5_{6}^{5} \sqrt{x}={ }_{6}^{5}(x+\sqrt{x})$.
(10) Let $x=\frac{p}{y^{m}}$, and $y=\frac{q}{2^{n}}, p$ and q being invariabse,
then $y^{m}=\frac{q^{m}}{z^{m n}}$, and $\frac{p}{y^{m}}=p \div \frac{q^{m}}{z^{m n}}=\frac{p}{q^{m}} \cdot z^{m n}$
$\therefore x==\frac{p}{q^{m}} \cdot 2^{m n}$.
$a=\frac{p}{q^{m}} \cdot c^{m n}$, and $\frac{p}{q^{m i}}=\frac{a}{c^{m n}}$.
$\therefore x=\frac{a}{c^{m n}} \cdot z^{m n}$,
and $c^{m n} x=a z^{m n}$.
It is proper to observe that all the preceding examples adm of proof. Thus, in the answor to example 9 , if we substitute
ior x we ought to find $y=5$, or if we substitute 9 for x we ought to find $y=10$.

The subject of Variation is of considerable use in Naturas Philusophy, and though not quite so easily understood as the other parts of Proportion, is worthy the careful study of the learner.

ALITHMETICAL PROGIESSION.

Article 294.

Note.- The learner who wishes to understand the subject thoroughly should derive each of the formulse on pago 245, by taking the two equations at the beginning of this artiele, and finding from them the "talue of the quantity marked "Requi.to Wo shall illustrate the method of doing this by the solution of two of the most difficult cases, Nos. 2 and 14.

Formula 2. Taking the equations

$$
\begin{align*}
l & =a+(n-1) d \tag{1}\\
\text { and } \mathbf{S} & =(a+l) \frac{n}{2} \tag{2}
\end{align*}
$$

we have given a, d, and S , and it is required to find l.
The first step is to eliminate n. This may be done by finding the value of n from each of the equations, and putting these va nes equal to each other.

Eq. (1) gives $n=\frac{l-a+d}{d}=\frac{l-a}{d}+1$.
eq. (2) gives $n=\frac{2 S}{l+a}$;
$\therefore \frac{l-a}{d}+1=\frac{2 \mathbf{S}}{l+a}$;
clearing, $l^{2}-a^{2}+d l+a d=2 d \mathrm{~S}$,

$$
\begin{gathered}
l^{2}+d l+\frac{d^{2}}{4}=2 d \mathrm{~S}+\left(a^{2}-a d+\frac{d^{2}}{4}\right) \\
=2 d \mathbf{S}+\left(a-\frac{1}{2} d\right)^{2}, \\
l+\frac{d}{2}= \pm \sqrt{ }\left\{2 d \mathrm{~S}+\left(a-\frac{1}{2} d\right)^{2}\right\} \\
l=-\frac{1}{2} d \pm \sqrt{ }\left\{2 d \mathrm{~S}+\left(a-\frac{1}{2} d\right)^{2}\right\}
\end{gathered}
$$

Formula 14. Here we have the same formulæ, and the same ouantities a, a, and S given, to find n.

Finding the value of l in equation (2), and substituting it in (1) we have $a+(n-1) d=\frac{2 S-n a}{n}$;
clearing and reducing, $n^{2}+\frac{2 a-d}{d} n=\frac{2 \mathrm{~S}}{d}$,

$$
\begin{aligned}
& n^{2}+\frac{2 n-d}{d} n+\frac{(2 a-d)^{2}}{4 d^{2}}=\frac{(2 a-d)^{2}+8 d \mathrm{~S}}{4 d^{2}} \\
& \text { whence } n= \pm \frac{\sqrt{(2 a-d)^{2}+8 d \mathrm{~S}}-2 a \dot{d}}{2 d}
\end{aligned}
$$

Ex. (10) Here $d=-\frac{1}{3}$, and we have given u, d, and n, to find S ; we, therefore, use formula 5 , whence

$$
\begin{aligned}
S & =\frac{1}{2} n\{2 a+(n-1) d\} \\
& =\frac{1}{2} n\left\{26-(n-1) \frac{1}{3}\right\} \\
& n\{78-(n-1)\}={ }_{6}^{1} n(79-n) .
\end{aligned}
$$

(11) Here $d=-\frac{7}{6}$, and u, d, and n are given to find \mathbf{S}.

$$
\mathrm{S}=\frac{1}{2} n\left\{1-\frac{7}{6}(n-1)\right\}=\frac{1}{12} n\{6-7(n-1)\}=\frac{n}{12}(13-7 n) .
$$

(12) Here $a=\frac{2 a-b}{a+b}$, and we have a, d, and n given to find \mathbf{S}. Substituting in formula 5 , we have

$$
\begin{aligned}
S & =\frac{1}{2} n\left\{\frac{2(a-b)}{a+b} \div(n-1)\left(\frac{2 a-b}{a+b}\right)\right\}, \\
& =\frac{\frac{1}{2} n}{a+b}\{2 a n-n b-b\}=\frac{n}{a+b}\left\{n a-\frac{(n+1)]}{2}\right\}
\end{aligned}
$$

(13) Here $d=-\frac{1}{n}$, and we have a, d, and n given, to find \mathbf{S}.

$$
\begin{aligned}
S & =\frac{1}{2} n\left\{\frac{2(n-1)}{n}-\frac{1}{n}(n-1)\right\}=\frac{1}{2} n\left\{\frac{n-1}{n}\right\} \\
& =\frac{n-1}{2} .
\end{aligned}
$$

(14) Here $a=16_{1}^{1} \frac{1}{2}, d=16_{1}^{1} \times 2=32 \frac{1}{6}$, and $n=30$, to find 1 and S .

Formula 1 gives $l=16 \frac{1}{1} 2+(30-1) 32 \frac{1}{6}=948 \frac{1}{1} \frac{1}{2}$.
$\mathrm{S}=(l+a)_{2}^{n}=\left(948 \frac{1}{1} \frac{1}{2}+16 \frac{1}{1 \pi}\right)^{3} \frac{3}{2}=14475$.
(15) Since there are 200 stones, there are 200 terms, tnerefore $n=200$; and since the person travels $20+20=40$ gards, or 120 feet for the first stone, therefore $a=120$. And since the stones are 2 feet apart, he must travel over twice this distance to reach each successive stone, therefore the common difference $d=4$. Applying formula 5 to find the sum of the series of which the first term is 120, the common difference $d=4$, and the number 0° terms $n=200$, we have
$S=20 \frac{0}{2}\{2(120)+(200-1) 4\}=100(1036)$
$=103600$ feet $=19 \mathrm{~m} .4$ fur., 640 feet.
(17) Here $a=3, b=18$, and $m=4$,
$p=\frac{b-a}{m+1}=\frac{18-3}{4+1}=3$, hence the means are
$3+3=6,9,12,15$.
(18) Here $a=1, b=-1$, and $m=9$,

$$
\begin{aligned}
& d=\frac{b-a}{m+1}=\frac{-1-1}{9+1}=-\frac{1}{5}, \\
& 1-\frac{1}{5}=\frac{4}{5}, \frac{4}{5}-\frac{1}{5}=\frac{3}{5}, \& c .
\end{aligned}
$$

(19) Here $a=19, d=-2$, and $S=91$; and it is required to find n, which may be done by formula 14 ,

$$
\text { where } \begin{aligned}
n & =\frac{ \pm \sqrt{(2 a-d)^{2}+8 d \mathrm{~S}-2 a+d}}{2 d} ; \\
\text { hence } n & =\frac{ \pm \sqrt{(38+2)^{2}-16 \times 91}-38-2}{-4} \\
& =\frac{ \pm 12-40}{-4}=\mp 3+10=+13 \text {, or }+7
\end{aligned}
$$

Hence, the sum of either 13 terms, or 7 terms, wil. oe equa. to Q1. To explain the reason of this let the first thirteen terms of the series be written thus,

No. of term, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, terms $19,17,15,13,11,9,7,5,3,1,-1-3-5$

Here we see that the sum of the first 7 terms is 91 , and the reason that the sum of 13 terms is the same, is owing to the fac: that the sum of the last six terms is zero, the sum of the positive and negative quantities baing equal to each other.
(20) Here $a=.034, d=.0344-.034=.0004$, and $S=2 .^{\circ}$. 4 Substituting these values in formula 14, we have

$$
\begin{aligned}
n & =\frac{ \pm \sqrt{(.068-.0004)^{2}+.0087936}-.068+.0004}{.008} \\
& =\frac{ \pm .1156-.0676}{.008}=+60
\end{aligned}
$$

(21) Let $x=$ the first term, and $y=$ the common difference, then $x+y=$ second term, and $x+x+y=2 x+y=4$; fifth term $=a+(n-1) d=x+(5-1) y=x+4 y=9$.
From these equations we readily find $x=1$ and $y=2$, hence the series is $1,3,5,7,9, \& c$.
(22) Let $x=$ the first term, and $y=$ the common difference, then the series is

$$
\begin{aligned}
& x, x+y, x+2 y, x+3 y, x+4 y \\
& \text { whence } x+-(x+y)=2 x+y=18, \\
& \text { and }(x+2 y)+(x+3 y)+(x+4 y)=3 x+9 y=12 .
\end{aligned}
$$

From these equations we find $x=10$, and $y=-2$. It is now required to find n, having given the first term $=10$, the common difference -2, and the sum of the series 28 .

Formula 14 gives $n=\frac{ \pm \sqrt{(20+2)-448}-20-2}{-4}$

$$
\begin{aligned}
& =\frac{\mp 6-22}{-4} \\
& =\mp 1 \frac{1}{2}+5 \frac{1}{2}=4, \text { or } 7 .
\end{aligned}
$$

The series is $10,8,6,4,2,0,-2, \& c$.
Here we readily perceive why the sum of 4 terms is the same es that of 7 .
(23) In this example we car readily find the irst, second, \& terms by making $n=1,2,3$, \&c.
Let $n=1$, then $1^{n t}$ term $=\frac{1}{6}(3-1)=\frac{1}{3}$,

$$
\text { " } n=2 \text {, then } 2^{n d} \text { term }==_{6}^{\frac{1}{6}}(6-1)==^{5} \text {, }
$$

$\frac{1}{i}-\frac{1}{3}=\frac{3}{6}=\frac{1}{2}=$ the common difference.
Sum of n term $=\left\{\frac{1}{3}+\frac{1}{6}(3 n-1)\right\} \frac{n}{2}=\left\{\frac{1}{2} n+\frac{1}{6}\right) \frac{n}{2}$

$$
=\frac{n}{12}(3 n+1)
$$

(24) Here $a=1$, and $d=2$, to find the sum of r terms, and also of $2 r$ terms.
From formula 5, we find the sum of

$$
\begin{aligned}
& r \text { terms }=\frac{1}{2} r\{2+(r-1) 2\}=r^{2}, \\
& \text { of } 2 r \text { terms }=\frac{1}{2} \times 2 r\{2+(2 r-1) 2\}=4 r^{2} . \\
& \therefore 4 r^{2}: r^{2}:: x: 1,
\end{aligned}
$$

whence $r^{2} x=4 r^{2}$, and $x=4$.

The sum S of n terms $=\frac{1}{2} n\{2 a+(n-1) d\}=a n+\frac{1}{2} n^{2} d-\frac{1}{2} n d$. The sum S^{\prime} of $2 n \quad$ " $=\frac{2 n}{2}\{2 a+(2 n-1) d\}=2 a n+2 n^{2} d-n d$;
$\left.\begin{array}{l}\text { Sum of } 2 n \text { terms - sum of } n \text { terms, or the } \\ \text { second half of } 2 n \text { terms. }\end{array}\right\}=a n+\frac{3}{2} n^{2} d-\frac{1}{2} n d$.
Sum $\mathbf{S}^{\prime \prime}$ of $3 n$ terms $=\frac{3 n}{2}\{2 a+(3 n-1) d\}=3 a n+\frac{9}{n^{2}} n^{2} d-3 n d$.

$$
\frac{3 a n+\frac{9}{2} n^{2} d-\frac{3}{2} n d}{a n+\frac{3}{2} n^{2} d-\frac{1}{2} n d}=3 \text {, the required ratio. }
$$

This is an interesting general thearem, which the pupil should illustrate by numbers; thus, if we take the series $1,3,5,7,9$; $\& c$. , the sum of the second 4 terms is 48 , and the sum of the first 12 terms is 144 , being 3 times that of the second half of $2 n$ terms n being 4 .
(26) $\frac{18}{n+1}=d, 1+\frac{18}{n+1}=\frac{n+19}{n+1}=1^{\text {at arithmetical mean. }}$
$a+(n-1) d=\frac{n+19}{n+1}+(n-1) \frac{18}{n+1}=\frac{19 n+1}{n+1}=n^{\text {th }}$ term.
$a+(n-2-1) d=\frac{n+19}{n+1}+(n-2-1) \frac{18}{n+1}=\frac{19 n-35}{n+1}$
$=(n-2)$ term.
$\left(\frac{19 n+1}{n+1}+\frac{n+19}{n+1}\right)^{n}=\frac{10 n^{2}+10 n}{n+1}=10 n=$ sum of n terms
$\left(\frac{19 n-35}{n+1}+\frac{n+19}{n+1}\right) \frac{(n-2)}{2}=\frac{10 n^{2}-28 n+16}{n+1}$
$=$ sum of ($n-2$) terms.
$\therefore 10 n: \frac{10 n^{2}-28 n+16}{n+1}:: 5: 3$,
whence $30 n=\frac{50 n^{2}-140 n+80}{n+1}$,
or $30 n^{2}+30 n=50 n^{2}-140 n+80$,
reducing, $2 n^{2}-17 n=-8$, whence $n=+8$.
(27) Let $x=$ the number of days the first travels before he is overtaken by the second. It is then required to find the sum of x terms of the arithmetical series whose first tern. u, is 1 , and common difference $d=1$.
$S=\frac{1}{2} n\{2 a+(n-1) d\}=\frac{x}{2}\{2+(x-1)\}=\frac{1}{2} x^{2}+\frac{1}{2} x$.
The second travels ($x-5$) days at the rate of 12 miles a day r ence the whole distance he travels is represented by $12(x-5)$.

$$
\begin{aligned}
& \therefore \frac{1}{2} x^{2}+\frac{1}{2} x=12(x-5), \\
& \text { or, } x^{2}-23 x=-120 .
\end{aligned}
$$

Whence $x=8$ or 15 .
and $x-5=3$ or 10 .
\therefore the second travels $12 \times 3=36$ miles,
or $12 \times 10=120$ miles.
The second traveler overtakes the first at the end of 3 days, when each has traveled 36 miles; the second then passes the first, but as the first increases his speed each day, at the end of the $10^{\text {th }}$ day he overtakes the second and they are thus twice together.

This example furnishes a beautiful illustration of the mannel in which tho different roots of an equation correspond to the meverah circumstances of the problem.

GEOMETIIGAL PROGRESSION.

Article 300.

Nore.-All the formule in this Article are derived from the two equations

$$
\begin{gather*}
\quad l=a r^{n-}, \tag{1}\\
\text { and } \mathrm{S}=\frac{a r^{n-}-a}{r-1}=\frac{r l-a}{r-1}, \tag{2}
\end{gather*}
$$

by supposing any three of the quantities to be known, and then finding the values of the other two. In general, the formulæ are very easily found, but where n is large the resulting numerical equation is hard to solve, and can only be understond by the learner, after he becomes acquainted with tho numerical solution of equations, as contained in the Algebra, Articles 428, to 444. After the pupil becomes acquainted with exponential equations, Articles 382,383 , he will find no difficulty in obtaining the last four formuler, 17 to 20 .

To illustrate the method of finding these formula from the two preceding equations, we shall find l, formula 4.

From (1) $a=\frac{l}{r^{n-1}}$,
" (2) $a=r l-S(r-1)$.
Placing these values of a equal to each other, we fin l

$$
l=\frac{\mathbf{S}\left(r^{n}+r^{n-1}\right)}{r^{n}-1}=\frac{r-1) \mathbf{S}^{n n-1}}{r^{n}-1}
$$

(1) $r=2, r^{n-1}=2^{7}=128 ; ~ a r^{n-1}=5 \times 128=640$.
(2) $r=\frac{1}{2}, r^{n-1}=\left(\frac{1}{2}\right)^{6}=\frac{1}{6} \frac{1}{2} ; a r^{n-1}=54 \times{ }_{6}^{1}=\frac{7}{3} \frac{7}{2}$.
(3) $r=2 \frac{1}{4} \div 3 \frac{3}{8}=\frac{2}{3}, r^{n-1}=\left(\frac{2}{3}\right) 5=\frac{3}{2}-\frac{2}{3}$;
$a r^{n-1}={ }_{8}^{7} \times{ }^{7}{ }^{3}=\frac{4}{9}$.
(4) $n=-\frac{1}{2} \frac{4}{1}=-\frac{2}{3},\left(-\frac{2}{3}\right)^{6}=7 \frac{4}{2}, \frac{64}{7}: 5$

$$
\begin{equation*}
r=\frac{1}{2} \div \frac{1}{3}=\frac{3}{2}, r^{n-1}=\left(\frac{3}{2}\right)^{n-1}=\frac{3^{n-1}}{2^{n-1}} ; a r^{n-1}=\frac{1}{3} \times \frac{3^{n-1}}{2^{n-1}}=\frac{3^{n-1}}{2^{n}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
r=3, \text { and } l=n^{t h} \text { term }=1 \times 3^{n-1}=3^{n-1} \tag{10}
\end{equation*}
$$

$$
\mathrm{S}=\frac{r l-a}{r-1}=\frac{3 \times 3^{n-1}-1}{3-1}=1\left(3^{n}-1\right) .
$$

111) Here $r=-2$, and l, or $n^{\text {th }}$ term $=1 \times(-2)^{n-1}=\mp 2^{n-}$ according as n is odd or even.
$\mathbf{S}=\frac{r l-a}{r-1}=\frac{-2 \times\left(\mp 2^{n-1}\right)-1}{-2-1}=\frac{1}{3}\left(1 \mp 2^{n}\right)$.
112) Here $r=-\frac{y}{x}$, and l, or $n^{\text {th }}$ term $=x\left(-\frac{y}{x}\right)^{n-1}=\frac{x\left(-\frac{y}{x}\right)^{n}}{\frac{-y}{x}}$
$=\frac{x^{2}\left(-\frac{y}{x}\right)^{n}}{-y} ; \mathrm{S}=\frac{r l-a}{r-1}=$
$\frac{-\frac{y}{x} \times x^{2}\left(-\frac{y}{x}\right)^{n}-x}{-\frac{y}{x}-1}=\frac{x\left(-\frac{y}{x}\right)^{n}-x}{-\frac{y}{x}-1}$
$=\frac{x-x\left(-\frac{y}{x}\right)^{n}}{\frac{x+y}{x}}=\frac{x^{2}-x^{2}\left(-\frac{y}{x}\right)^{n}}{x+y}=\frac{x^{2}}{x+y}\left\{1-\left(-\frac{y}{x}\right)^{n}\right\}$
113) Comparing the given quantities with those in formula 13. we have $a=4, l=12500$, and $n=6$, to find r.
$r=\sqrt[n]{-\sqrt{\frac{l}{a}}}=\sqrt[5]{12 \frac{20}{4} 0}=\sqrt[5]{3125}=5$.
$\mathrm{S}=\frac{r l-a}{r-1}=\frac{12500 \times 5-4}{5-1}=15624$.

- (14) Let $x=$ the $1^{s t}$ term, and $y=$ the ratio, then $x, x y$, an; $x y^{2}$ represent the first three terms, and

$$
\begin{align*}
& x+x y=9 \tag{1}\\
& x+x y^{2}=15 \tag{2}
\end{align*}
$$

From these equations we readily find $y=2$, or $-\frac{1}{3}$, hence $x=3$, or $13!$; therefore the series is $3,6,4, \& c . ;$ or, $13 \stackrel{1}{2},-4 \frac{1}{2},+1 \xrightarrow[2]{1}, \& c$.
(15) Herc $a=\frac{2}{3}$, and $r=\frac{1}{2} ; \mathrm{S}=\frac{a}{1-r}=\frac{\frac{2}{3}}{1--\frac{1}{2}}=\frac{1}{3}$,
(16) Here $a=9$, and $r=\frac{2}{3} ; \quad S=\frac{9}{1-\frac{2}{3}}=\frac{9}{\frac{1}{3}}=27$.
(17) Here $a=6$ and $r=\frac{1}{3} ; S=\frac{6}{1-\frac{1}{3}}=\frac{6}{\frac{2}{3}}=9$.
(18) Here $a=\frac{2}{3}$, and $r=-\frac{1}{2} ; S=\frac{\frac{2}{3}}{1+\frac{1}{2}}=\frac{4}{9}$.
(19) Here $a=100$, and $r=\frac{2}{5} ; ~ S=\frac{100}{1-\frac{2}{5}}=\frac{100}{\frac{3}{5}}=166 \frac{2}{3}$.
(20) Here $a=a$, and $r=\frac{b}{a} ; \mathrm{S}=\frac{a}{1-\frac{b}{a}}=\frac{a^{2}}{a-b}$
(21) If we begin at the second term, the series is a regular geometric series, of which the first term is $2 a$, and the ratio $r=a$, hence the sum of this series is $\frac{2 a}{1-a}$. Then, adding 1 to this, the sum of the series $1+2 a+2 a^{2}+2 a^{3}+$, $\& c$. , is $1+\frac{2 a}{1-a}=\frac{1-a}{1-a}+\frac{2 a}{1-a}=\frac{1+a}{1-a}$.
(22) Let $x=$ the $1^{t t}$ term, and $y=$ the ratio, then $x+x y=2 \frac{2}{3}$, and $S=3=\frac{x}{1-y}$, from the formula $S=\frac{a}{1-r}$. From these equations we find $y=+\frac{1}{3}$, or $-\frac{1}{3}$, and $x=2$ or 4 ; lience there are two series, the first being

$$
2+\frac{2}{3}+\frac{2}{9}+, \& c .
$$

and the second $4-\frac{4}{3}+\frac{4}{9}-, \& c$.
25; Here $m=2$, and $r=m+1 \sqrt{\frac{1}{a}}=\sqrt[3]{\frac{2}{\frac{1}{2} \frac{1}{7}}}=\sqrt[3]{\frac{27}{8}}=\frac{3}{2}$.

- $\frac{1}{2} \frac{6}{7} \times \frac{3}{2}=\frac{8}{9}$, and $\frac{8}{9} \times \frac{3}{2}=\frac{4}{3}$, are the means.
(26) Here $m=7$, and $r=\sqrt[8]{1 \frac{2}{2} \frac{12}{2}}=\sqrt[4]{\sqrt[2]{6561}}=\sqrt[4]{81}=3$.
\therefore the means are $2 \times 3=6,6 \times 3=18$, \&c.

Article 301.

CIRCULATING DECIMAL寊

(1) Here $a=\frac{63}{100}=\frac{63}{10^{2}}, r \frac{1}{100}=\frac{1}{10^{2}}$,

$$
S=\frac{.63}{1-\frac{1}{100}}=\frac{.63}{99}=\frac{63}{99}=\frac{7}{11} .
$$

$$
\text { Or, thus, } \mathrm{S}=.63636363 \ldots
$$

$$
100 \mathrm{~S}=63.63636363 . . .
$$

$$
99 \mathrm{~S}=63 .
$$

$$
S=\frac{63}{9}=\frac{7}{1} 1 .
$$

(2) Here $\mathrm{S}=.54123123123$. . . $100000 \mathrm{~S}=54123.123123$. . .

$$
\begin{aligned}
& 100 \mathrm{~S}=54.123123 \\
& 99900 \mathrm{~S}=54069 . \\
& \mathrm{S}=\frac{5}{9} \frac{40}{9} 9 \frac{0}{9} 9 \\
& \hline
\end{aligned}
$$

HARMONICALPROGRESSION。

Article 303.

(3) Inverting the terms 3 and 12 , they become $\frac{1}{3}$ and $\frac{1}{12}$.

Let us now insert two arithmetic means between $\frac{1}{3}$ and is and the reciprocals of these will be the harmonic means between 3 and 12.

See example 16, page 246. $a=\frac{1}{12}, b=\frac{1}{3}$, and $m=2$;
$\frac{b-a}{m+1}=\frac{\frac{1}{3}-\frac{1}{12}}{2+1}=\frac{3}{12} \div 3=\frac{1}{12}$,
$\frac{1}{12}+\frac{1}{12}=\frac{2}{12}=\frac{1}{6}$, hence 6 is one of the harmonic means ; $\frac{1}{6}+\frac{1}{1}: \frac{3}{12}=\frac{1}{1}$, hence 4 is the other harmonic mean.
(4) 2 and $\frac{1}{5}$ inverted become $\frac{1}{2}$ and 5. Let us now insert two arithmetic means between $\frac{1}{2}$ and 5 .

$$
\frac{b-a}{m+1}=\frac{5-\frac{1}{2}}{3}=1 \frac{1}{2}
$$

${ }_{2}^{1}+11_{2}^{1}=2$, hence ${ }_{3}^{1}$ is ne of the harmonic ineans, 2, $2+1 \frac{1}{2}=3 \frac{1}{2}$, hence $\frac{1}{3!}={ }_{7}^{2}$ is the other
(5) $\frac{1}{2}$ and $\frac{1}{T}$ inverted become 2 and 12 , let us now insert 4 arilhmetic means between 2 and 12 .
$\frac{b-a}{m+1}=\frac{12-2}{4+1}=\frac{10}{5}=2$, hence we have for the arithnzetic means, $4,6,8,10$, and for the harmonic means,

$$
\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10} .
$$

(6) Since α, b, c, are in arithmetical progression, we have $a-b=b-c$; and since b, c, d, are in harmonical progression, we have $\frac{1}{b}, \frac{1}{c}$, and $\frac{1}{d}$ in arithmetical progression.
$\therefore \frac{1}{c}-\frac{1}{b}=\frac{1}{d}-\frac{1}{c}$,
or, by reducing the fractions on each side to a common denominator.

$$
\frac{b-c}{b c}=\frac{c-d}{c d},
$$

multiplying by $c, \frac{b-c}{b}=\frac{c-d}{d}$:
hence (Art. 263), $b: b-c:: d: c-d$, but $b-c=a-b, \therefore b: a-b:: d: c-d$, by Inversion (Art. 271), $a-b: b:: c-d: d$,
by Composition (Art. 273), $a: b:: c: d$, which wa required to be proved.

PROBLEMS IN ARITHMETICALAND GEOM, TE RIOAL PROGRESSION.

Article 304.

(3) Let $x-y, x$ and $x+y$, be the numbers, then $x-y+x+x+y=3 x=30$, and $x=10$, also, $(x-y)^{2}+x^{2}+(x-y)^{2}=3 x^{2}+2 y^{2}=308$.
By substituting the value of x we find $y=2$, hence $x-y=8, x=10$, and $x+y=12$, are the numbers.
(4) Let $x-3 y, x-y, x+y$, and $x+3 y$, be the numbers, then $x-3 y+x-y+x+y+x+3 y=4 x=26$, and $x=6 \frac{1}{2}$, also, $(x-3 y)(x+3 y)(x-y)(x+y)=880$, or, $\left(x^{2}-9 y^{2}\right)\left(x^{2}-y^{2}\right)=880$, or, $x^{4}-10 x^{2} y^{2}+9 y^{4}=880$;
substituting the value of x, and reducing, we find $y=\frac{3}{2}$, hençe the numbers are $2,5,8,11$.
(5) Let $x=$ the first term, and $y=$ the ratio, then $x, x y, x y^{2}$ represent the terms, and

$$
\begin{align*}
& x+x y+x y^{2}=31, \tag{1}\\
& x+x y: x+x y^{2}:: 3: 13, \\
& \text { or, } \frac{x+x y^{2}}{x+x y}=\frac{1+y^{2}}{1+y}=\frac{13}{3} . \tag{2}
\end{align*}
$$

From (2) we find $y=5$, and by substituting this in (1), we find $x=1$; therefore, the numbers are 1,5 , and 25 .
(6) Let $x-y, x$, and $x+y$,represent the numbers, then

$$
\begin{align*}
& (x-y)^{2}+x^{2}+(x+y)^{2}=3 x^{2}+2 y^{2}=83 \tag{1}\\
& x^{2}-(x-y)(x+y)=x^{2}-\left(x^{2}-y^{2}\right)=y^{2}=4 \tag{2}
\end{align*}
$$

From (2) $y=2$, and by substituting this value in (1), we find $x=5$; hence the numbers are $3,5,7$.
(7) Let $x-3 y, x-y, x+y$, and $x+3 y$, represent the numbers

$$
\text { then } \begin{align*}
(x-3 y)(x+3 y) & =x^{2}-9 y^{2}=27, \tag{1}\\
(x-y)(x+y) & =x^{2}-y^{2}=35 . \tag{2}
\end{align*}
$$

From these equations we easily find $y=1$, and $x=6$; hence the numbers are $3,5,7,9$.
(8) Let $x-y, x$, and $x+y$, represent the numbers, then $(x-y)+x+(x+y)=3 x=18$, and $x=6$;
also, $2 x-2 y, 3 x$, and $6 x+6 y$ are in geometrical progression
$\therefore 2(x-y)(x+y) 6=9 x^{2}$,

$$
\text { or, } 12\left(x^{2}-y^{2}\right)=9 x^{2},
$$

whence $2 y=x$, and $y=3$,
therefore the numbers are $6-3=3,6$, and $6+3=9$.
(9) Let $x-1, x$, and $x+1$, represent the numbers, then $(x-1)^{4}+x^{4}+(x+1)^{4}=3 x^{4}+12 x^{2}+2=962$; whence $x=4$, and the numbers are $3,4,5$.
(10) Let $x-3!y, x-y, x+y$, and $x+3 y$, represent the numbers, then $(x-3 y)(x-y)(x+y)(x+3 y)=(x-3 y)(x+3 y)(x-y)$ $(x+y)=\left(x^{2}-9 y^{2}\right)\left(x^{2}-y^{2}\right)=x^{4}-10 x^{2} y^{2}+9 y^{4}=840$.

But since the common difference between the numbers is 1 , therefore $2 y=1$, and $y=\frac{1}{2}$; substituting this value of y and reducing, we find $x=5 \frac{1}{2}$; hence the numbers are $4,5,6,7$.
(11) Let $x-3 y, x-y, x+y$, and $x+3 y$, represent the three numbers then
$(x-3 y)(x-y)(x+y)(x+3 y)=x^{4}-10 x^{2} y^{2}+9 y^{4}=280$,
and $(x-3 y)^{2}+(x-y)^{2}+(x+y)^{2}+(x+3 y)^{2}=166$,
or, $4 x^{2}+20 y^{2}=166$,
$\therefore x^{2}=41!-5 y^{2}$.
Let $41 \frac{1}{2}=a$, then $x^{4}=a^{2}-10 a y^{2}+25 y^{4}$.
Substituting the values of x^{4} and x^{2} in equation (1), and reducing, we have
$84 y^{4}-830 y^{2}=-\frac{576.9}{4}$.
Whence $y=1 \frac{1}{2}$, and by substitution x becomes $5 \frac{1}{2}$, whence the numbers are
$5 \frac{1}{2}-3\left(1 \frac{1}{2}\right)=1,5 \frac{1}{2}-1 \frac{1}{2}=4,5 \frac{1}{2}+1 \frac{1}{2}=7$, \&c.
(12) Let $x-4 y, x-3 y, x-2 y, x--y, x, x+y, x+2 y, x+3 y$, and $x+4 y$, represent the numbers; then their sum $=9 x=45$, whence $x=5$;
also, the sum of their squares $=9 x^{2}+60 y^{2}=285$, from which, by substituting the value of x, we find $y=1$; hence the numbers are $1,2,3, \& c$., to 9 .
(13) Let $x-3 y, x-2 y, x-y, x, x+y, x+2 y$, and $x+3 y$, represent the numbers ; then their sum $=7 x=35$, whence $x=5$ also, the sum of their cubes $=7 x^{3}+84 x y^{2}=1295$, from which, by substituting the value of x, we find $y=1$. hence the numbers are $2,3,8 c$., to 8 .
(14) Let x and y represent the numbers, then

$$
\begin{aligned}
& \quad \begin{array}{l}
x+y \\
\frac{1}{2}
\end{array} \quad \sqrt{x y}:: 5: 4, \\
& \text { or, } x+y: 2 \sqrt{x y}:: 5: 4, \\
& \text { (Art. 276), } \quad 17 \quad x^{2}+2 x y+y^{2}: 4 x y:: 25,16,
\end{aligned}
$$

(Art. 274, Note,)	$x^{2}-2 x y+y^{2}: x^{2}+2 x y+y^{2}:: 9: 25$,			
(Art. 276),	$x-y$	$x+y$	$:: 3:$	5,
(Art. 275),	$2 x$	$2 y$	$:: 8:$	2,
or,	x	y	$:: 4:$	1.

This theorem may also be proved ay multiplying together the muane and extremes of the first proportion and finding the value. if x in terms of y, by which we find $x=-y$ or $\frac{1}{4} y$.

The converse of the preceding proposition is also true; that is, if one of two numbers is 4 times the other, then their arithmetic mean is to their geometric mean as 5 to 4 . Thus, let a and $4 a$ be two numbers, then $2 \frac{1}{2} a$ is their arithmetic mean, and $2 a$ their geometric mean, and $2 \frac{1}{2} a: 2 a:: 5: 4$.
(15) Let $x^{2}, x y$, and y^{2}, represent the numbers, then

$$
\begin{align*}
& x^{2}+x y+y^{2}=7 \tag{1}\\
& \frac{1}{x^{2}}+\frac{1}{x y}+\frac{1}{y^{2}}=\frac{7}{4} \tag{2}
\end{align*}
$$

Multiplying both members of equation (2) by $x^{2} y^{2}$, we have $x^{2}+x y+y^{2}={ }_{4}^{7} x^{2} y^{2}$,
$\therefore \frac{7}{4} x^{2} y^{2}=7$, whence $x^{2} y^{2}=4$, and $x y=2$.
Substituting the value of $x y$ in (1), we find $x^{2}+y^{2}=5$ then from this, and $x y=2$, we readily find $x=2$ and $y=1$; hence the numbers are 4,2 , and 1 .
(16) Let $\frac{x^{2}}{y}, x, y$, and $\frac{y^{2}}{x}$, represent the numbers,

$$
\text { then } \begin{align*}
\frac{x^{2}}{y}+y & =10 \tag{1}\\
x+\frac{y^{2}}{x} & =30 \tag{2}
\end{align*}
$$

Clearing these equations of fractions, by multiplying (1) by y, and (2) by x, we have

$$
\begin{aligned}
& x^{2}+y^{2}=10 y, \text { and } \\
& x^{2}+y^{2}=30 x \\
& \text { whence } 10 y=30 x, \text { and } y=3 x .
\end{aligned}
$$

Substituting this value of y in either of the equations (1) and (2), we find $x=3$; hence $y=9$, and the numbers are $1,3,9,27$.
(17) Let $x, x y, x y^{2}, x y^{3}$, be the numbers; then $x+x y^{3}=35$, and $x y+x y^{2}=3 C$.
Dividing one equation by the other ;
$\frac{x+x y^{3}}{x y+x y^{2}}=\frac{35}{30}$, or $\frac{1+y^{3}}{y+y^{2}}=\frac{7}{6}$.
But $1+y^{3}$ is divisible by $1+y$, and $y+y^{2}=y(1+y)$
$\therefore \frac{1+y^{3}}{y+y^{2}}=\frac{(1+y)\left(1-y+y^{2}\right)}{y(1+y)}=\frac{1-y+y^{2}}{y}=\frac{7}{6} ;$
whence $6 y^{2}-13 y=-6$, and $y=\frac{3}{2}$ or $\frac{2}{3}$.
And $x==\frac{30}{y+y^{2}}=8$ or 27.
Hence the numbers are $8,12,18,27$.
(18) Let $x, x y, x y^{2}, x y^{3}$, be the numbers when increased;
$\therefore x-2, x y-4, x y^{2}-8, x y^{3}-15$ are in arithmetical pro gression ; hence $1^{\text {tt }}+3^{\text {rd }}=2^{\text {nd }} \times 2$; and $2^{\text {nd }}+4^{\text {th }}=$ $3^{\text {rd }} \times 2$;
$\therefore(x-2)+\left(x y^{2}-8\right)=2(x y-4)$;
or, $x-2 x y+x y^{2}=2 ; \quad x\left(1-2 y+y^{n}\right)=-2$,
also, $(x y-4)+\left(x y^{3}-15\right)=2\left(x y^{2}-8\right)$;
or, $x y-2 x y^{2}+x y^{3}=3 ; \therefore x y\left(1-2 y+y^{2}\right)=-3$.
Dividing equation (2) by (1), we have
$\frac{x y\left(1-2 y+y^{2}\right)}{x\left(1-2 y+y^{2}\right)}=\frac{3}{2}$, or $y=\frac{3}{2}$,
whence $x\left(1-3+\frac{9}{4}\right)=2$.
$\therefore x=8, x y=12, x y^{2}=18$, and $x y^{3}=27$;
and subtracting $2,4,8$, and 15 from these nupebers, the remainders $6,8,10,12$, are the numbers required.
(1S) Let $x, x y, x y^{2}$, be the numbers, then $x \times x y \times x y^{2}=x^{3} y^{3}=64$,

$$
x y=\sqrt[3]{64}=4
$$

also, $x^{3}+x^{3} y^{3}+x^{3} y^{6}=584$,

$$
x^{3}+x^{3} y^{6}=584-x^{3} y^{3}=520
$$

From the equation $x y=4$, we have $x=\frac{4}{v}$;
substituting this value of x in the last equation, we have $\frac{64}{y^{3}}+64 y^{3}=520$.
dividing by $8, \frac{8}{y^{3}}+8 y^{3}=65$;
clearing, $\quad 8 y^{6}-65 y^{3}=-8$;
whence (Art. 242), $y^{3}=8$ or $\frac{1}{8}$, and $y=2$ or $\frac{1}{2}$
$\therefore x=2$ or 8 , and the numbers are $2,4,8$.

PERMUTATIONS, COMBINATIONS, AND BINOMIAL THEOREM.

Articles 305-309.

(1) (Art. 306), $\mathrm{P}_{2}=n(n-1)=5(5-1)=20$;

$$
\begin{aligned}
& \mathrm{P}_{3}=n(n-1)(n-2)=5 \times 4 \times 3=60 ; \\
& \mathrm{P}_{4}=n(n-1)(n-2)(n-3)=5 \times 4 \times 3 \times 2=180
\end{aligned}
$$

(2) (Art. 308), $\mathrm{C}_{2}=\frac{n(n-1)}{1 \times 2}=\frac{5 \times 4}{1 \times 2}=10$;

$$
\begin{aligned}
\mathrm{C}_{3} & =\frac{n(n-1)(n-2)}{1 \times 2 \times 3}=\frac{5 \times 4 \times 3}{1 \times 2 \times 3}=10 ; \\
\mathrm{C}_{4} & =\frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}=\frac{5 \times 4 \times 3 \times 2}{1 \times 2 \times 3 \times 4}=5 ; \\
\mathrm{C}_{5} & =\frac{n(n-1)(n-2)(n-3)(n-4)}{1 \times 2 \times 3 \times 4 \times 5} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4 \times 5}=1 .
\end{aligned}
$$

(3) (Art. 306a), $\mathrm{P}_{\mathrm{r}}=\mathrm{P}_{3}=1 \times 2 \times 3=6$.

Thus, NOT, NTO, ONT, OTN, TNO, TON.
$\mathrm{P}_{5}=1 \times 2 \times 3 \times 4=24$.
(4) This is a case of permutations, when all the letters are taken together (Art. 306a).
$\therefore \mathrm{P}_{6}=1 \times 2 \times 3 \times 4 \times 5 \times 6=720$.
(5) This is similar to the preceding.
$\therefore P_{7}=1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7=5040$.
(6) The whole number of arrangements is evidently equal to the sum of the different permutations of six letters taken 1 together, 2 together, and so on

$$
\begin{aligned}
& \mathbf{P}_{1}=n=\text {. } 6 \\
& \mathrm{P}_{\mathbf{q}}=n(n-1)=6 \times 5=\text {. } 30 \\
& \mathrm{P}_{3}=n(n-1)(n-2)==6 \times 5 \times 4=\text {. } 120 \\
& \mathbf{P}_{\mathrm{d}}=n(n-1)(n-2)(n-3)=6 \times 5 \times 4 \times 3=. \quad \text {. . } 360 \\
& \mathrm{P}_{5}=n(n-1)(n-2)(n-3)(n-4)=6 \times 5 \times 4 \times 3 \times 2=\text {. } 720 \\
& \mathrm{P}_{8}=n(n-1)(n-2)(n-3)(n-4)(n-5)=6 \times 5 \times 4 \times 3 \times 2 \\
& \times 1= \\
& 720 \\
& \text { Ans. } \overline{1956 .}
\end{aligned}
$$

(7) Here the number of different products will evidently be equal to the number of combinations of 4 things taken 2 together.
$\therefore \mathrm{C}_{2}=\frac{n(n-1)}{1 \times 2}=\frac{4 \times 3}{1 \times 2}=6$.
Let the learner verify this result by finding the different prodacts; they are $12,15,18,20,24,30$.
(8) Here it is merely required to find the number of combinations of 5 things, taken 3 together.
$\therefore \mathrm{C}_{3}=\frac{n(n-1)(n-2)}{1 \times 2 \times 3}=\frac{5 \times 4 \times 3}{1 \times 2 \times 3}=10$.
(9) The number of permutations of n things, taken 4 together is $\mathrm{P}_{4}=n(n-1)(n-2)(n-3)$;
taken 3 together, is $\mathrm{P}_{3}=n(n-1)(n-2)$;
$\ldots n(n-1)(n-2)(n-3)=6 n(n-1)(n-2)$;
dividing each member by $n(n-1)(n-2)$, we have $n-3=6$, or $n=9$.
(10) By Art. 306, the number of permutations of 15 things taken r together, and $r-1$ together, is

$$
\begin{aligned}
& P_{r}=15 \times 14 \times 13 \times 12 . \cdots(15-\overline{r-2})(15-\overline{r-1}), \\
& P_{r-1}=15 \times 14 \times 13 \times 12(15-\overline{r-2}) .
\end{aligned}
$$

Here we see shat the two quantities are the same, except the last factor of the first quantity, which, by the terms of tho question must therefore be equal to 10 ; that is.

$$
\begin{aligned}
& 10=15-r-1, \\
& \text { whence } \quad r=6 .
\end{aligned}
$$

Thus the permutations of 15 letters, taken 6 together, are $15 \times 14 \times 13 \times 12 \times 11 \times 10$, and the permutations of 15 letters, taken 5 together, are $15 \times 14 \times 13 \times 12 \times 11$, whence it is readily seen that the former is equal to 10 times the latter.

$$
\begin{align*}
& \mathrm{C}_{1}=n=\text {. } 4 \tag{11}\\
& \mathrm{C}_{2}=\frac{n(n-1)}{1 \times 1}=\frac{4 \times 3}{1 \times 2}=\ldots . .6 \\
& \mathrm{C}_{3}=\frac{n(n-1)(n-2)}{1 \times 2 \times 3}=\frac{4 \times 3 \times 2}{1 \times 2 \times 3} \cdots . .4 \\
& \mathrm{C}_{4}=\frac{n(n-1)(n-2)(n \quad 3)}{1 \times 2 \times 3}=\frac{4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4}=1 \\
& \text { Ans. } \overline{15} \text {. }
\end{align*}
$$

The learner may easily verify this result by taking the coins, or by finding the different sums that can be formed of the numbers $1,3,5,10$; the sums are

$$
1,3,5,10 ; 4,6,11,8,13,15 ; 9,14,16,18 ; 19
$$

(12) Here it will be necessary to find the different combinations of six things taken singly, two together, three together, four together, five together, and six together.

$\mathrm{C}_{2}=\frac{n \times(n-1)}{1 \times 2}=\frac{6 \times 5}{1 \times 2}=\ldots$.
$\mathrm{C}_{3}=\frac{n(n-1)(n-2)}{1 \times 2 \times 3}=\frac{6 \times 5 \times 4}{1 \times 2 \times 3}=\ldots20$
$\mathbf{C}_{4}=\frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}=\frac{6 \times 5 \times 4 \times 3}{1 \times 2 \times 3 \times 4}=.15$
$\mathrm{C}_{5}=\frac{n(n-1)(n-2)(n-3)(n-4)}{1 \times 2 \times 3 \times 4 \times 5}=\frac{6 \times 5 \times 4 \times 3 \times 2}{1 \times 3 \times 3 \times 4 \times 5}=$
$\mathrm{C}_{6}=\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{1 \times 2 \times 3 \times 4 \times 5 \times 6}=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4 \times 5 \times 6}=1$
Ans. $\overline{33}$.
In this solution we notice an illustration of the principle of Art. 309. Thus the number of combinations of 6 things, taken 1 together, is the same as when taken ($6-1$), or 5 together ; the
namber, when taken 2 together, is the same as when taken (6-2), or 4 together.
'.13 He may vote for 1 candidate only, or for any 2, or for any 3 ; hence the whole number of ways in which he can vote will be equal to the number of combinations of four things taken singly, of four things taken two together and of four things taken three together ; thus,
$\mathrm{C}_{1}=n=$. 4

$$
\mathrm{C}_{2}=\frac{n(n-1)}{1 \times 2}=\frac{4 \times 3}{1 \times 2}=\cdots \cdots \cdot \cdots
$$

$$
\mathrm{C}_{3}=\frac{n(n-1)(n-2)}{1 \times 2 \times 3}=\frac{4 \times 3 \times 2}{1 \times 2 \times 3}=\ldots4
$$

Total number of ways $=$. $\overline{14}$.
(14) If we reserve u, and take the different combinations of the four remaining letters b, c, d, e, taken two together, we may then unite a to each of them, hence the required number will be obtained by finding the different combinations of four letters taken two together.
$\mathrm{C}_{\mathbf{2}}=\frac{n(n-1)}{1 \times 2}=\frac{4 \times 3}{1 \times 2}=6$; and the combinations are $a b c, a b d, a b e, a c d, a c e, a d e$.
(15) A different guard may be posted as often as there are dif ferent combinations of 4 men out of 16 .

$$
\mathrm{C}_{4}=\frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}=\frac{16 \times 15 \times 14 \times 13}{1 \times 2 \times 3 \times 4}=1820 .
$$

T'o find the number of times any particnlar man will be on guard, it is merely necessary to find the different combinations of $(4-1)=3$ men that can be formed out of $(16-1)=15$ men, since he reserved man may be combined with each combination of $\mathbf{3}$ men, giving a combination of 4 men.

$$
\mathrm{C}_{3}=\frac{n(n-1)(n-2)}{1 \times 2 \times 3}=\frac{15 \times 14 \times 13}{1 \times 2 \times 3}=455 .
$$

(16) $\mathrm{C}_{4}=\stackrel{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}$,

$$
\mathrm{C}_{2}=\frac{n(n-1)}{1 \times 2},
$$

$$
\begin{gathered}
\frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4} \cdot \frac{n(n-1)}{1 \times 2}: 15: 2, \\
(\text { Art. } 267), \frac{2 n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}=\frac{15 n(n-1,}{1 \times 2}
\end{gathered}
$$

Dividing both members by $\frac{n(n-1)}{1 \times 2}$,
$\frac{2(n-2)(n-3)}{3 \times 4}=15$,
reaucing, $n^{2}-5 n=84$, and $n=12$.
(17) To find the number of peals that may be rung with 5 bells out of 8 , find the number of different combinations of 5 things out of 8 , then each combination will give as many changes as there are permutations of 5 bells, and the whole number of changes will be equal to the number of combinations multiplied by the number of permutations in each combination.

$$
\begin{aligned}
& \mathrm{C}_{5}=\frac{n(n-1)(n-2)(n-3)(n-4)}{1 \times 2 \times 3 \times 4 \times 5}=\frac{8 \times 7 \times 6 \times 5 \times 1}{1 \times 2 \times 3 \times 4 \times 5}=56 ; \\
& \mathrm{P}_{5}=1 \times 2 \times 3 \times 4 \times 5=120 ; \\
& 56 \times 120=6720 .
\end{aligned}
$$

The number of changes with the whole peal will evidently be ${ }^{1}$ equal to the number of permutations of 8 things taken all together.

$$
P_{8}=1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=40320 .
$$

(18) Had the letters been different the number would be $\mathbf{P}_{7}=1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7=5040$; but there are $2 a$'s, and therefore (Art. 307), we must divide by 1×2 : $5040 \div 2=2520$. Ans.
(19) Since there are $3 a$'s, $4 b$'s and $2 c$'s, in all 9 letters:
\therefore (Art. 307a), the number of ways is

$$
\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9}{(1 \times 2 \times 3)(1 \times 2 \times 3 \times 4)(1 \times 2)}=5 \times 7 \times 4 \times 9=1260 .
$$

(20) The namber of terms in which a^{3} will stand first, wit evidently be equal to the mumber of permutations take
all together of the letters in $l^{4} C^{2}$, which, by Art. 307 since there are 6 letters, is
$\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{(1 \times 2 \times 3 \times 4)(1 \times 2)}=15$.
(21) Reserving two letters, there are 5 letters remaining, then each permutation of 5 letters may be preceded by al, therefore the whole number of permutations of 7 letters in which $a b$, or any other combination stands first, will be equal to the whole number of permutations of the remaining letters taken all together.
$1 \times 2 \times 3 \times 4 \times 5=120$.
When $a b c$ stands first there are 4 letters remaining;
$1 \times 2 \times 3 \times 4=24$.
When $a b c d$ stands first there are 3 letters remaining ;
$1 \times 2 \times 3=6$.
Thus, abcd(efg), abcd(egf), abcd(feg), abcd(fge), abcd(gef), abcd (gfe).
(22) The number of different combinations of 2 consonants, out of 17 , is $\frac{n(n-1)}{1 \times 2}=\frac{17 \times 16}{1 \times 2}=136$.
Each of these combinations may be united with each of the 5 vowels, giving $136 \times 5=680$ different combinations of 2 consonants and 1 vowel ; now each of these combinations of 3 letters will give $1 \times 2 \times 3=6$ permutations, therefore the whole number of words will be $680 \times 6=4080$.
(23) In the word "Notation" there are 5 different letters; and the number of different combinations of 5 letters, taken 3 together, is $\frac{n(n-1)}{1 \times 2}=\frac{5 \times 4}{1 \times 2}=10$. But there are $2 n$'s, 20 's, and $2 t$'s, each of which pairs may be combined with each of the other 4 letters, and form 4 combinations of 3 letters, making altogether 3×4, or 12 such ronibinations where the letters are repeated.
\therefore the number required $=10+12=22$.
The learner may easily write out the several combinations; thus the first ten formed of the letters "NOTAI" may be ar--anged as in Art. 309, and the remaining twelve are nno, nnt, ${ }_{\text {nna }}, n n i$; oon, ool, ona, ooi ; ttn, tto, tta tti.

Remark.- The term "different" is sometimes used ir the preceding sorutions in connection with combinations; this is not ntended, however, to change the meaning of the word combinations, as given in the Algebra (Art. 308), but merely to render it more emphatic.

BINOM.ALTHEOREM,

When the exponent is a positivernteger

(2) By comparing the quantities with those in the formula (Art. 310, Cor. 3), we find $n=10, n-r+1=6, a=x$ and $x=y$.
Since $n-r+1=6$, we have $10-r+1=6$, and $r=5$; hence $n-r+2=10-5+2=7$, and $r-1=4$; therefore the coëfficient of the $r^{\text {th }}$ term, that is, the term in which the exponent of the leading letter is 6 , is

$$
\frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}=\frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4}=210 . \quad \text { Ans. }
$$

The coëfficient, however, is most readily found by writing out the whole development, thus,
$(x+y)^{10}=x^{10}+10 x^{9} y+45 x^{8} y^{2}+120 x^{7} y^{3}+210 x^{6} y^{4}+, \& c$.
(3) If instead of a, x, n, and r, we substitute $c^{2}, \cdots d^{2}, 12$, and 5 in the formula, Cor 3, Art. 310, we have

$$
\frac{12 \times 11 \times 10 \times 9}{1 \times 2 \times 3 \times 4}\left(c^{2}\right)^{8}\left(-d^{2}\right)^{4}=495 c^{18} d^{8} .
$$

(4) Comparing the quantities with those in the formula, Cor. 3, Art. 310, we have $a=a^{3}, x=3 a b, n=9$, and $r=7$.
\therefore the $7^{\text {th }}$ term is $\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{1 \times 2 \times 3 \times 4 \times 5 \times 6}\left(a^{3}\right)^{3}(3 a b)^{6}$
$=84 a^{9} \times 729 a^{6} b^{6}=61236 a^{15} b^{6}$ 。
(5) Referring to the same formula, $a=3 a^{2}, x=-7 x^{3}, n=8$ and $r=5 ; \therefore$ the $5^{\text {th }}$ term $=\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4}\left(3 a^{2}\right)^{4}\left(-7 . x^{3}\right)^{4}$
$=70 \times 81 a^{8} \times 2401 x^{2}=13613670 a^{8} x^{12}$.
(6) Here $a=a x, x=b y, n=10$, and $r=6$;
\therefore the 6^{4} term $=\frac{10 \times 9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4 \times 5}(a x)^{5}(b y)^{5}$
$=252 a^{5} b^{5} x^{5} y^{3}$.
(7) Since the exponent of the binomial is 12 , there will be 13 terms (Art. 310, Cor. 4), hence the middle term will be the $7^{u n}$, and $a=a^{m}, x=x^{n}, n=12$, and $r=7$, (Art. 310, Cor. 3) ;
\because the middle term $=\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4 \times 5 \times 6}\left(a^{m}\right)^{8}\left(x^{n}\right)^{6}$ $=924 a^{6 n} x^{8 n}$.
(8) Since the exponent of the binomial is 13 , there will be 14 terms, and tho two middle terms will be the $7^{\text {th }}$ and $8^{\text {th }}$, the coëfficients of which will he the samo, (Art. 310, Cor. 5).
(Art. 310, Cor. 3), $a=a$, and $x=x, n=13$, and $r=7$;
$\therefore 7^{\text {th }}$ term $=\frac{13 \times 12 \times 11 \times 10 \times 9 \times 8}{1 \times 2 \times 3 \times 4 \times 5 \times 6} a^{7} x^{6}=1716 a^{7} x^{6} ;$
Since the exponent of the leading letter increases by unity in each term, and the exponent of the other letter decreases by unity, $\therefore 8^{t h}$ term $=1716 a^{6} x^{7}$.
(9) (Art. 310, Cor. 3), $a=1, x=x, n=11, r=8$;
$\therefore 8^{\text {th }}$ term $=\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}(1)^{4}(x)^{7}=330 x^{7}$.
(10) (Art. 310, Cor. 3), $a=x, x=-y, n=30, r=6$;
$\therefore 6^{\text {th }}$ term $=\frac{30 \times 29 \times 28 \times 27 \times 26}{1 \times 2 \times 3 \times 4 \times 5}(x)^{25}(-y)^{5}$
$=-142506 x^{25} y^{5}$.
(11) Comparing this with the general expansion of $a+x$ Art. 310 , we have $a=3 a c, x=-2 b d$, and $n=5$; and we have $(3 a c-2 b d)^{5}=(3 a c)^{5}+5(3 a c)^{4}(-2 b d)$ $+10(3 a c)^{3}(-2 b d)^{2}+10(3 a c)^{2}(-2 b d)^{3}+5(3 a c)(-2 b d)^{4}$ $+(-2 b d)^{5}=243 a^{5} c^{5}-810 a^{4} c^{4} b d+1080 a^{3} c^{3} b^{2} d^{2}$
$-720 a^{2} c^{2} b^{3} d^{3}+240 a c b^{4} d^{4}-32 b^{5} d^{5}$.
(12) $(a+2 b-c)^{3}=\{(a+2 b)-c\}^{3}=(a+2 b)^{3}-3(a+2 b)^{2} c$
$+3(a+2 b) c^{2}-c^{3}=a^{3}+6 a^{2} l+12 a b^{2}+8 b^{3}$
$-3 a^{2} c-12 a b c-12 b^{2} c+3 a c^{2}+6 b c^{2}-c^{3}$.
(13) Since the coëfficients in the expansion of $(a \dot{+} x)^{n}$ do not contain either a or x, they will be the same when $a=1$
or $x=1$, or both a and x at the same time $=1$. (See Art 310, Cor. 6).
For the sake of brevity let the coëfficients of the ex pansion of $(1+x)^{n}$ be represented by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \& c$. then
$(1+x)^{n}=1+\mathrm{A}_{1} x+\mathrm{A}_{2} x^{2}+\mathrm{A}_{3} x^{3}+\mathrm{A}_{4} x^{4}+\mathrm{A}_{5} x^{5}+, \& \mathrm{c}$.
Writing - x, instead of x,
$(1-x)^{n}=1-\mathrm{A}_{1} x+\mathrm{A}_{2} x^{2}-\mathrm{A}_{3} x^{3}+\mathrm{A}_{4} x^{4}-\mathrm{A}_{5} x^{5}+, \& \mathrm{c}$.
Now if x be made $=1$, then since $(1-1)^{n}=0$, we have $1-A_{1}+A_{2}-A_{3}+A_{4}-A_{5}+, \& c .,=0$.
$\therefore 1+A_{2}+A_{4}+A_{6}+, \& c .,=A_{1}+A_{3}+A_{5}+, \& c$.
That is, the sum of the coëfficients of the odd terms is equal to the sum of the coifficients of the even terms.

INDETERMINATE OOEFFICIENTS; BINOMIAL THEOREM WHEN THE EXPONENT IS FRACTIONAL OR NEGATIVE; SERIES.

INDETERMINATECOEFFICIENTS

Articles 314-318.

(1) Iet $\frac{1+2 x}{1-3 x}=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{D} x^{3}+\mathrm{E} x^{4}+, \& \mathrm{C}$.

Clearing of fractions, we have
$1+2 x=\mathrm{A}+(\mathrm{B}-3 \mathrm{~A}) x+(\mathrm{C}-3 \mathrm{~B}) x^{2}+(\mathrm{D}-3 \mathrm{C}) x^{2}+, \& \mathrm{E} .$, from which, by equating the coëficients of J_{12} same powers of x,

$$
\begin{aligned}
A & =1 ; \\
B-3 A & =2, \text { whence } B=5 ; \\
C-3 B & =0, \text { whence } C=15 ; \\
D-3 C & =0, \text { whence } D=45, \& c \\
\therefore \frac{1+2 x}{1-3 x} & =1+5 x+15 x^{2}+45 x^{3}+, \& c
\end{aligned}
$$

(2) Jet $\left.\frac{1+2 x}{1-x-x^{2}}=\Lambda+B x+\mathrm{C} x^{2}+1\right) x^{3}+\mathrm{H} x^{1}+, \mathrm{Bc}$

Clearing, $1+2 x=\Lambda+(B-A) x+(C-A-13) \cdot x^{2}$
$+(\mathrm{D}-\mathrm{B}-\mathrm{C}) x^{3}+, \& c$.

- (Art. 314),

$$
\begin{aligned}
\text { (Art. 314), } \begin{aligned}
& \mathrm{A}=1, \\
& B-A=2, \text { whence } \mathrm{B}=3 ; \\
& \mathrm{C}-\mathrm{A}-\mathrm{B}=0, \text { whence } \mathrm{C}=4 ; \\
& \mathrm{D}-\mathrm{B}-\mathrm{C}=0, \text { whence } \mathrm{D}=7 ; \\
& \frac{1+2 x}{1-x-x^{2}}=1+3 x+4 x^{2}+7 x^{3}+11 x^{4}+, \text { \&c. }
\end{aligned}
\end{aligned}
$$

Here we easily perceive that the law is, that the coëfficient of any term is equal to the sum of the coëfficients of the two preceding terms.
(3) Let $\frac{1-3 x+2 x^{2}}{1+x+x^{2}}=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{D} x^{3}+, \& c$.

Clearing, $1-3 x+2 x^{2}=\mathrm{A}+(\mathrm{A}+\mathrm{B}) x+(\Lambda+\mathrm{B}+\mathrm{C}) x^{2}$ $+(B+C+D) x^{3}+, \& c$.
\therefore (Art. 314), $A=1$;

$$
\begin{aligned}
& A+B=-3 \text {, whence } B=-3-A=-4 \text {; } \\
& A+B+C=2 \text {, whence } C=2-B-A=5 \text {; } \\
& \mathrm{B}+\mathrm{C}+\mathrm{D}=0 \text {, whence } \mathrm{D}=-\mathrm{B}-\mathrm{C}=-1 \text {; } \\
& \mathrm{C}+\mathrm{D}+\mathrm{E}=0 \text {, whence } \mathrm{E}=-\mathrm{C}-\mathrm{D}=-4 \text {; \&c. }
\end{aligned}
$$

. . the series is $1-4 x+5 x^{2}-x^{3}-4 x^{4}+$, \&cc.
(4) Let $\frac{3+2 x}{5+7 x}=\mathrm{A}+\mathrm{B} x+\mathrm{Cx}^{2}+\mathrm{D} x^{3}+\mathrm{E} x^{4}+$, \&c.

Clearing, $3+2 x=5 \mathrm{~A}+(7 \mathrm{~A}+5 \mathrm{~B}) x+(7 \mathrm{~B}+5 \mathrm{C}) x^{2}$ $+(7 \mathrm{C}+5 \mathrm{D}) x^{3}+, \& \mathrm{c}$.
\therefore (Art 314), $5 \mathrm{~A}=3$, whence $\mathrm{A}=\frac{3}{5}$;
$7 \mathrm{~A}+5 \mathrm{~B}=2$, whence $\mathrm{B}=-\frac{11}{25}=-\frac{11}{5^{2}} ;$
$7 \mathrm{~B}+5 \mathrm{C}=0$, whence $\mathrm{C}=\frac{77}{5^{3}}=\frac{7.11}{5^{3}}$;
$7 \mathrm{C}+5 \mathrm{D}=0$, whence $\mathrm{D}=-\frac{7^{2} \cdot 11}{5^{4}}$; \&c.
\therefore the series is $\frac{3}{5}-\frac{11}{5^{2}} x+\frac{7.11}{5^{3}} x^{2}-\frac{7^{2} \cdot 11}{5^{4}} x^{3}+$, \&c.
(5) Let $\frac{1+x}{(1-x)^{3}}-\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{D} x^{3}+\mathrm{E} x^{4}+, \& \mathrm{c}$

Clearing, by mul, iplying both sides by $(1-x)^{9}$,

$$
\begin{aligned}
& 1+x=\mathrm{A}+(\mathrm{B}-3 \mathrm{~A}) x+(3 \mathrm{~A}-3 \mathrm{~B}+\mathrm{C}) x^{2} \\
& +(3 \mathrm{~B}-\mathrm{A}-3 \mathrm{C}+\mathrm{D}) x^{3}+(3 \mathrm{C}-\mathrm{B}-3 \mathrm{D}+\mathrm{E}) x^{4}+, \& \mathrm{c}
\end{aligned}
$$

\therefore (Art. 314), $\quad \mathrm{A}=1$;

$$
B-3 A=1 \text {, whence } B=4=2^{2} \text {; }
$$

$3 A-3 B+C=0$, whence $C=9=3^{2}$;

$$
3 B-A-3 C+D=0 \text {, whence } D=16=4^{2} \text {, }
$$

$$
3 \mathrm{C}-\mathrm{B}-3 \mathrm{D}+\mathrm{E}=0 \text {, whence } \mathrm{E}=25=5^{2} ; \& \mathrm{c} \text {. }
$$

\therefore the series is $1^{2}+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+5^{2} x^{4}+, \& c$.
6) Let $\sqrt{1-x}=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{D} x^{3}+\mathrm{E} x^{4}+\mathrm{F} x^{5}+$, \&cc. Squaring both members,

$$
\begin{gathered}
1-x=\mathrm{A}^{2}+2 \mathrm{AB} x+\left(2 \mathrm{AC}+\mathrm{B}^{2}\right) x^{2}+(2 \mathrm{AD}+2 \mathrm{BC}) x^{3} \\
+\left(2 \mathrm{AE}+2 \mathrm{BD}+\mathrm{C}^{2}\right) x^{4}+, \& \mathrm{c} .
\end{gathered}
$$

\therefore (Art. 314), $\mathrm{A}^{2}=1$, whence $\mathrm{A}=1$;
$2 \mathrm{AB}=-1$, whence $\mathrm{B}=-\frac{1}{2}$;
$2 \mathrm{AC}+\mathrm{B}^{2}=0$, whence $\mathrm{C}=-\frac{1}{8}=-\frac{1}{2 \cdot 4} ;$
$2 \mathrm{AD}+2 \mathrm{BC}=0$, whence $\mathrm{D}=-\frac{1}{16}=-\frac{3}{2 \cdot 4 \cdot 6} ;$
$2 \mathrm{AE}+2 \mathrm{BD}+\mathrm{C}^{2}=0$, whence $\mathrm{E}=-\frac{5}{128}=-\frac{3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}$,
\therefore the series is $1-\frac{x}{2}-\frac{x^{2}}{2.4}-\frac{3 x^{3}}{2 \cdot 4 \cdot 6}-\frac{3.5 x^{4}}{2 \cdot 4 \cdot 6 \cdot 8}-$, \&c.
(7) If we assume ($1+x+x^{2}$) equal to the preceding series, $A+B x+, \& c$., and square both members, the coëthcients of the different powers of x will be the same as in the preceding solution. By equating the corresponding coêfficients, we have

$$
A^{2}=1, \text { whence } A=1 ;
$$

$2 \Lambda B=1$, whence $B=1 ;$;
$2 A C+B^{2}=1$, whence $C=\frac{3}{8}$;
$2 \mathrm{AD}+2 \mathrm{BC}=0$, whence $\mathrm{D}=-\frac{3}{16} ; \& \mathrm{c}$.
\because the series is $1+\frac{x}{2}+\frac{3 x^{2}}{8}-\frac{3 x^{3}}{16}+$, \&c.
(8) The solution of this example is exactly like the preceding except that in equating the corresponding coëfficients the right member of each equation is 1 .
(9) Since $x-x^{2}=x(1-x)$, let $\frac{1+x}{x-x^{2}}=\frac{\mathrm{A}}{x}+\frac{\mathrm{B}}{1-x}$.

Reducing the fractions to a common denominator, we have
$\frac{1+x}{x-x^{2}}=\frac{\mathrm{A}(1-x)+\mathrm{Bx}}{x(1-x)} ;$
or, $\quad 1+x=\mathrm{A}+(\mathrm{B}-\mathrm{A}) x$;
whence $A=1$, and $B-A=1$, or $B=2$.

$$
\therefore \frac{1+x}{x-x^{2}}=\frac{1}{x}+\frac{2}{1-x} .
$$

(10) Since $x^{2}-4=(x+2)(x-2)$, let $\frac{8 x-4}{x^{2}-4}=\frac{\mathrm{A}}{x+2}+\frac{\mathrm{B}}{x-2}$.

$$
\begin{aligned}
\therefore & \frac{8 x-4}{x^{2}-4}=\frac{A(x-2)+B(x+2)}{(x+2)(x-2)}=\frac{(A+B) x+(2 B-2 A)}{(x+2)(x-2)} \\
& 8 x-4=(A+B) x+(2 B-2 A) ;
\end{aligned}
$$

$\ldots A+B=8$, and $2 B-2 A=-4$;
Solving these equations, we find $\mathrm{A}=5$, and $\mathrm{B}=3$;
$\therefore \frac{8 x-4}{x^{2}-4}=\frac{5}{x+2}+\frac{3}{x-2}$.
(11) Since $x^{2}-7 x+12=(x-4)(x-3)$, let $\frac{x+1}{x^{2}-7 x+12}$
$=\frac{\mathrm{A}}{x-4}+\frac{\mathrm{B}}{x-3}$.
$\therefore \frac{x+1}{x^{2}-7 x+12}=\frac{\mathrm{A}(x-3)+\mathrm{B}(x-4)}{(x-4)(x-3)}$
$=\frac{(A+B) x-(3 A+4 B)}{(x-4)(x-3)}$;
$x+1=(\mathrm{A}+\mathrm{B}) x-(3 \mathrm{~A}+4 \mathrm{~B})$;
$\therefore A+B=1$, and $-3 A-4 B=1$;
whence $A=5$, and $B=-4$;

$$
\therefore \frac{x+1}{x^{2}-7 x+12}=\frac{5}{x-4}-\frac{4}{x-3} .
$$

(12) $\left(x^{2}-1\right)(x-2)=(x-2)(x-1)(x+1)$.

Let $\frac{x^{2}}{\left(x^{2}-1\right)(x-2)}=\frac{\mathrm{A}}{x-2}+\frac{\mathrm{B}}{x-1}+\frac{\mathrm{C}}{x+1}$

$$
\begin{array}{r}
=\frac{\mathrm{A}\left(x^{2}-1\right)+\mathrm{B}(x-2)(x+1)+\mathrm{C}(x-2)(x-1)}{(x-2)(x-1)(x+1)} \\
\cdot x^{2}=(\mathrm{A}+\mathrm{B}+\mathrm{C}) x^{2}-(\mathrm{B}+3 \mathrm{C}) x+(2 \mathrm{C}-\mathrm{A}-2 \mathrm{~B}) ;
\end{array}
$$

Solving these equations, we find $\mathrm{A}=\frac{4}{3}, \mathrm{~B}=-\frac{1}{2}, \mathrm{C}=\frac{1}{6}$;

$$
\therefore \frac{x^{2}}{\left(x^{2}-1\right)(x-2)}=\frac{4}{3(x-2)}-\frac{1}{2(x-1)}+\frac{1}{6(x+1)} .
$$

(13)

$$
x^{4}-a^{4}=\left(x^{2}-a^{2}\right)\left(x^{2}+a^{2}\right)=(x-a)(x+a)\left(x^{2}+a^{2}\right) .
$$

Let $\frac{1}{x^{4}-a^{4}}=\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{x+a}+\frac{\mathrm{C}}{x^{2}+a^{2}}$;

$$
=\frac{\mathrm{A}(x+a)\left(x^{2}+a^{2}\right)+\mathrm{B}(x-a)\left(x^{2}+a^{2}\right)+\mathrm{C}\left(x^{2}-a^{2}\right)}{(x-a)(x+a)\left(x^{2}+a^{2}\right)} ;
$$

$$
\therefore 1=(\mathrm{A}+\mathrm{B}) x^{3}+(\mathrm{A} a-\mathrm{B} a+\mathrm{C}) x^{2}
$$

$$
+\left(\mathrm{A} a^{2}+\mathrm{B} a^{2}\right) x+\mathrm{A} a^{3}-\mathrm{B} a^{3}-\mathrm{C} a^{2} .
$$

$$
\begin{equation*}
\therefore \text { (Art. 314), } A+B=0, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{A} a-\mathrm{B} a+\mathrm{C}=0, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{A} a^{2}+\mathrm{B} a^{2}=0, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{A} a^{3}-\mathrm{B} a^{3}-\mathrm{C} a^{2}=1 . \tag{4}
\end{equation*}
$$

Equation (3) is the same as (1) ; then finding the values of A, B, and C from (1), (2), and (4), we obtain

$$
\begin{aligned}
& A=\frac{1}{4 a^{2}}, B=-\frac{1}{4 a^{3}}, \text { and } C=-\frac{1}{2 a^{2}} ; \\
& \therefore \frac{1}{x^{4}-a^{4}}=\frac{1}{4 a^{3}(x-a)}-\frac{1}{4 a^{3}(x+a)}-\frac{1}{2 a^{2}\left(x^{2}+a^{2}\right)} .
\end{aligned}
$$

$$
\begin{align*}
& x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)=(x-1)\left(x^{2}+x+1\right)(x+1) \tag{14}\\
& \left(x^{2}-x+1\right)=(x-1)(x+1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right) .
\end{align*}
$$

If we place $\frac{1}{x^{6}-1}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{x^{2}-x+1}+\frac{D}{x^{2}+x+1}$, and reduce the fractions to a common denominator, and equate the coifficients of the same powers of x, we shall find the equations incompatible, hence we must make a different assumption.

A little reflection will show that in reducing the above fractions to a common denominator, and comparing the coefficients of the same powers of x, we shall have six independent equations, hence we may asmume the numerators of the fractions so as
to involve six unknown quantities, and as x may appear in the numerator of some of the fractions, we may assume it as a factor of one or more of the unknown coëflicients.
\therefore let $\frac{1}{x^{6}-1}=\frac{\mathrm{A}}{x-1}+\frac{\mathrm{B}}{x+1}+\frac{\mathrm{C} x+\mathrm{C}^{\prime}}{x^{2}-x+1}+\frac{\mathrm{D} x+\mathrm{D}^{\prime}}{x^{2}+x+1}$.
Reducing the fractions on the right to a common denom inator, the numerators are

$$
\begin{aligned}
& \mathrm{A}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)+\mathrm{B}\left(x^{5}-x^{4}+x^{3}-x^{2}+x-1\right) \\
& +\mathrm{C}\left(x^{5}+x^{4}-x^{2}-x\right)+\mathrm{C}^{\prime}\left(x^{4}+x^{3}-x-1\right) \\
& +\mathrm{D}\left(x^{5}-x^{4}+x^{2}-x\right)+\mathrm{D}^{\prime}\left(x^{4}-x^{3}+x-1\right), \text { which, are }=1 .
\end{aligned}
$$

Equating the coëfficients of the same powers of x on both sides, we have the following equations :

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D} & =0, \\
\mathrm{~A}-\mathrm{B}+\mathrm{C}-\mathrm{D}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime} & =0, \\
\mathrm{~A}+\mathrm{B}+\mathrm{C}-\mathrm{D}^{\prime} & =0, \\
\mathrm{~A}-\mathrm{B}-\mathrm{C}+\mathrm{D} & =0, \\
\mathrm{~A}+\mathrm{B}-\mathrm{C}-\mathrm{C}^{\prime}-\mathrm{D}+\mathrm{D}^{\prime} & =0, \\
\mathrm{~A}-\mathrm{B}-\mathrm{C}^{\prime}-\mathrm{D}^{\prime} & \tag{6}\\
& =1 .
\end{array}
$$

Solving these equations, we find $\mathrm{A}=\frac{1}{6}, \mathrm{~B}=-\frac{1}{6}$,

$$
C=\frac{1}{6}, C^{\prime}=-\frac{1}{3}, D=-\frac{1}{6}, D^{\prime}=-\frac{1}{3} .
$$

Substituting these values, and writing $\frac{1}{6}$ as a factor of the whole, we find

$$
\frac{1}{x^{6}-1}=\frac{1}{6}\left\{\frac{1}{x-1}-\frac{1}{x+1}+\frac{x-2}{x^{2}-x+1}-\frac{x+2}{x^{2}+x+1}\right\} .
$$

BINOMIAL THEOREM,

WHEN THE EXPONENT IS FRACTIONAL or negative.

Note.- Instead of finding the general law of the coéficients by the method given in the Algebra, page 277, it is proper to inform the student that there is another method, which is more simple in theory, but far more difficult in practice. We shall explain the method and show where the difficulty occurs.

Second.- To find the general law of the coëfficients.
Let $(1+x)^{n}=1+n x+B x^{2}+\mathrm{C} x^{3}+\mathrm{D} x^{4}+$, \&c., where B C, D, \&c., depend upon n.

Squaring both sides, we have

$$
\begin{array}{r}
(1+x)^{2 n}=1+n x+\mathrm{B} x^{2}+\mathrm{C} x^{3}+\mathrm{D} x^{4}+, \& \mathrm{c}, \\
+n x+n^{2} x^{2}+\mathrm{B} n x^{3}+\mathrm{C} n x^{4}+ \\
+\mathrm{B} x^{2}+\mathrm{B} n x^{3}+\mathrm{B}^{2} x^{4}+ \\
+\mathrm{C} x^{3}+\mathrm{C} n x^{4}+ \\
+\mathrm{D} x^{4}+
\end{array}
$$

But (Art. 201), $(1+x)^{2 n}=\left\{(1+x)^{2}\right\}^{n}=\left\{1+\left(2 x+x^{2}\right)\right\}^{n}$.
Considering $\left(2 x+x^{2}\right)$ as one term, we have

$$
\begin{aligned}
&\left\{1+\left(2 x+x^{2}\right)\right\}^{n}= 1+n\left(2 x+x^{2}\right)+\mathrm{B}\left(2 x+x^{2}\right)^{2}+\mathrm{C}\left(2 x+x^{2}\right)^{3}+, \text { \&: } \\
&= 1+2 n x+n x^{2} \\
&+4 \mathrm{~B} x^{2}+4 \mathrm{~B} x^{3}+\mathrm{B} x^{4} \\
&+8 \mathrm{C} x^{3}+12 \mathrm{C} x^{4}+, \& \mathrm{c} . \\
&+16 \mathrm{D} x^{4}+" \\
&+"
\end{aligned}
$$

Now since this series and the former must be identical, we have, by equating the coëfficients of the like powers of $x_{\text {, }}$

$$
\begin{aligned}
2 n & =2 n, \\
2 \mathrm{~B}+n^{2} & =4 \mathrm{~B}+n, \therefore \mathrm{~B}=\frac{n(n-1)}{1.2} ; \\
2 \mathrm{C}+2 \mathrm{~B} n & =8 \mathrm{C}+4 \mathrm{~B}, \therefore \mathrm{C}=\frac{\mathrm{B}(n-2)}{3}=\frac{n(n-1)(n-2)}{1.2 .3} \\
2 \mathrm{D}+2 \mathrm{C}-1 \mathrm{~B}^{2} & =16 \mathrm{D}+12 \mathrm{C}+\mathrm{B} .
\end{aligned}
$$

To find D from this equation in terms of η is a difficult operation, and the finding of \mathbf{E} would be still far more difficult. This, renders the demonstration given in the Algebra, on the whole much the easier of the two.

Article 320.

(2) Here $(n+1) \frac{b}{a+b}=\left(\frac{5}{2}\right) \frac{\frac{9}{10}}{1+\frac{9}{10}}={ }_{2}^{2} \times \frac{9}{10} \times \frac{10}{1} \frac{9}{4}=\frac{45}{3} ; \quad . r>1$; J:ence the $2^{\text {nd }}$ term is the greatest.
(3) Here $(n+1) \frac{b}{a+b}=(8+1) \frac{\sqrt[5]{2}}{3+\frac{5}{2}}=9 \times \frac{2}{2}=\frac{4}{1}=4 \frac{9}{1}=$

The first whole number, greater than $4 \frac{1}{11}$, is 5 ; therefore the $u^{\text {ath }}$ term is the greatest.

Article 321.

(1) Here $a=1, b=-x, n=-1$.

$$
\begin{aligned}
& \therefore(1-x)^{-1}=1-1 \times 1 \times-x-\frac{1(-1-1)}{1.2} x^{2} \\
& \cdots \frac{1(-1-1)(-1-2)}{1.2 .3}(-x)^{3}+, \& c ., \\
& =1+x+x^{2}+x^{3}+, \& c .
\end{aligned}
$$

(2) Here $a=1, b=-x, n=-2$.
$\therefore(1-x)^{-2}=1-2 \times 1 \times-x-\frac{2(-2-1)}{1.2}(-x)^{2}$
$-\frac{2(-2-1)(-2-2)}{1.2 \cdot 3}(-x)^{3}+, \& c .$,
$=1+2 x+3 x^{2}+4 x^{3}+, \& c$.
(3) To develope this expression, expand the part in toe pa ronthesis, and multiply by a^{2}.
Comparing $(a+x)^{-2}$ with $(a+l)^{n}$, we have
$a=a, b=x$, and $n=-2$.
$\therefore(a+x)^{-2}=a^{-2}-2 \times a^{-3} x-\frac{2(-2-1)}{1.2} a^{-4} x^{2}$
$-\frac{2(-3)(-4)}{1.2 .3} a^{-5} x^{3}+, \& c .$,

$$
=\frac{1}{a^{2}}-\frac{2 x}{a^{3}}+\frac{3 x^{2}}{a^{4}}-\frac{4 x^{3}}{a^{5}}+, \& c .
$$

$$
a^{2}(a+x)^{-2}=1-\frac{2 x}{a}+\frac{3 x^{2}}{a^{2}}-\frac{4 x^{3}}{a^{3}}+, \& c .
$$

(4) Here $a=1, b=-x^{3}, n=\frac{1}{3}$.
$\therefore\left(1-x^{3}\right)^{\frac{1}{3}}=1-\frac{1}{3} \times 1 \times x^{3}+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{1.2}\left(-x^{3}\right)^{2}$
$\perp \frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{1.2 .3}\left(-x^{3}\right)^{3}-\& c .$,
$=1-\frac{x^{3}}{3}-x_{9}^{6}-\frac{5 x^{9}}{81}-, \& c$.
(5) Here $a=a^{2}, b=x, n=\frac{1}{2}$.
$\therefore\left(a^{2}+x\right)^{\frac{1}{2}}=\left(a^{2}\right)^{\frac{1}{2}}+\frac{1}{2}\left(a^{2}\right)^{-\frac{1}{2}} x+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{1.2^{-}\left(a^{2}\right)^{-\frac{3}{2}} x^{2}+}$
$\frac{\frac{1}{2}\left(-\sum_{2}^{1}\right)\left(-\frac{3}{2}\right)}{1.2 .3}\left(a^{2}\right)^{-\frac{5}{2}} x^{3}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2 .3 .4}\left(a^{2}\right)^{-\frac{7}{2}} x^{4}+, \& c$.
$=a+\frac{x}{2 a}-\frac{x^{2}}{8 a^{3}}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128 a^{7}}+, \& \mathrm{c}$.
In making these reductions the pupil must notice that

$$
\begin{aligned}
& \frac{1}{2}\left(a^{2}\right)^{-\frac{1}{2}} x=\frac{x}{\left(2 a^{2}\right)^{\frac{1}{2}}}=\frac{x}{2 a} \\
& \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{1.2}\left(a^{2}\right)^{-\frac{3}{2}} x^{2}=-\frac{x^{2}}{8\left(a^{2}\right)^{\frac{3}{2}}}=-\frac{x^{2}}{8 a^{3}} \\
& \frac{1}{1.2}\left(-\frac{1}{2}\right)\left(-\frac{3}{3}\right)\left(a^{2}\right)^{-\frac{5}{2}} x^{3}=\frac{x^{3}}{16\left(a^{2}\right)^{\frac{5}{2}}}=\frac{x^{3}}{16 a^{5}}, \& c .
\end{aligned}
$$

6) Here $a=a^{3}, b=-x, n=\frac{1}{3}$.
$\therefore\left(a^{3}-x\right)^{\frac{1}{3}}=\left(a^{3}\right)^{\frac{1}{3}}+\frac{1}{3}\left(a^{3}\right)^{-\frac{2}{3}} \times-x+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)}{1 \cdot 2}\left(a^{3}\right)^{-\frac{5}{3}}(-x)^{2}$

$$
\begin{gathered}
+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{1.2 \cdot 3}\left(a^{3}\right)^{-\frac{8}{3}}(-x)^{3}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)}{1.2 \cdot 3.4}\left(a^{3}\right)^{-\frac{1}{3}}(-x)^{4} \\
\quad+, \& c .,=a-\frac{x}{3 a^{2}}-\frac{x^{2}}{9 a^{5}}-\frac{5 x^{3}}{81 a^{8}}-10 x^{4}-243 a^{11}-\& c .
\end{gathered}
$$

(7) Here $a=1, b=2 x, n=\frac{1}{2}$.
$\therefore(1+2 x)^{\frac{1}{2}}=1+\frac{1}{2}(2 x)+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{1.2}(2 x)^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2 .3}(2 x)^{2}$
$+\frac{\frac{1}{2}(-1,3)\left(\text { - }_{3}^{3}\right)\left(-\frac{0}{2}\right)}{1 \cdot 2 \cdot 3 \cdot 4}(2 x)^{4}+, \& c .$,
$=1+x-{ }_{2}^{1} x^{2}+\frac{1}{2} x^{3}-\frac{5}{6} x^{4}+, \& c$.
(8) Here $a=a^{2}, b=-x^{2}, n=\frac{1}{2}$.

$$
\begin{aligned}
& \therefore\left(a^{2}-x^{2}\right)=\left(a^{2}\right)^{\frac{1}{2}}+!\left(a^{2}\right)^{\frac{1}{2}} \times-x^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{1.2}\left(a^{2}\right)^{-\frac{3}{2}}\left(-x^{2}\right)^{2} \\
& +\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2 .3}\left(a^{2}\right)^{-\frac{5}{2}}\left(-x^{2}\right)^{3}+\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(a^{2}\right)^{-\frac{7}{2}} \\
& \left(x^{2}\right)^{4}+, \text { \&e. }
\end{aligned}
$$

$=x-\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}-\frac{x^{p}}{16 a^{5}}-\frac{5 x^{8}}{128}-, \& c$.
$\sqrt[3]{a} F=\sqrt[3]{ }\left\{a\left(1+\frac{x}{a}\right)\right\}=\sqrt[3]{a} \sqrt[3]{ }\left(1+\frac{x}{a}\right)$.
Comparing $\sqrt[3]{ }\left(1+\frac{x}{a}\right)$ with $(a+b)^{n}$, we have $a=1, b=\frac{x}{a}$ $n=\frac{1}{3}$.
$\therefore \sqrt[3]{ }\left(1+\frac{x}{a}\right)=1+\frac{1}{3} \frac{x}{a}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)}{1.2} \frac{x^{2}}{a^{2}}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{1.2 .3} \frac{x^{3}}{a^{3}}$
$+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)}{1 \cdot 2 \cdot 3 \cdot 4} \frac{x^{4}}{a^{4}}+$, \&c.,
$=1+\frac{x}{3 a}-\frac{x^{2}}{9 a^{2}}+\frac{5 x^{3}}{81 a^{3}}-\frac{10 x^{4}}{243 a^{4}}+, \& \mathrm{c}$.
$\therefore \sqrt[3]{a+x}=\sqrt[3]{a}\left(1+\frac{x}{3 a}-\frac{x^{2}}{9 a^{2}}+\frac{5 x^{3}}{81 a^{3}}-\frac{10 x^{4}}{243 a^{4}}+, 8 z c.\right)$
$\left(a^{3}+x^{3}\right)^{\frac{1}{3}}=\left\{a^{3}\left(1+\frac{x^{3}}{a^{3}}\right)\right\}^{\frac{1}{3}}=a\left(1+\frac{x^{3}}{a^{3}}\right)^{\frac{1}{3}}$.
Comparing $\left(1+\frac{x^{3}}{a^{3}}\right)^{\frac{1}{8}}$ with $(a+b)^{n}$, we have $a=1$, $b=\frac{x^{3}}{a^{3}}, n=\frac{1}{3}$.
$\therefore\left(1+\frac{x^{3}}{a^{3}}\right)^{\frac{1}{5}}=1+\frac{1}{3} \frac{x^{3}}{u^{3}}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)}{1.2} \frac{x^{6}}{a^{6}}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{1.2 .3} \frac{x^{9}}{a^{9}}+$, \&c. $=1+\frac{x^{3}}{3 a^{3}}-\frac{2 x^{6}}{3 \cdot 6 a^{6}}+\frac{2 \cdot 5 x^{9}}{3 \cdot 6 \cdot 9 a^{9}}-, \& \mathrm{c}$.
$\therefore\left(a^{3}+x^{3}\right)^{\frac{1}{3}}=a\left(1+\frac{x^{3}}{3 a^{3}}-\frac{2 x^{6}}{3.6 a^{6}}+\frac{2.5 x^{9}}{3 \cdot 6.9 a^{2}}-, \& c.\right)$
(11) $\sqrt[3]{8+1}=\sqrt[3]{ }\left\{8\left(1+\frac{1}{8}\right)\right\}=2 \sqrt[3]{\left(1+\frac{1}{8}\right)}$. By comparing this with example 9 , we find that $\alpha=8, \sqrt[3]{a}=2$, and $x=1$. We may therefore obtain the development merely by substituting $\frac{1}{8}$ for $\frac{x}{a}$, in the development of $\sqrt[3]{a+x}$, or by the method pursued in the solution of that example.
(12) This is the same as example 10 , except that x^{3} is minus instead of plus: the development will therefore be the
same, except that the even powers of x^{3}, that is x^{6}, x^{12}, and so on, will be plus instead of minus.

$$
\begin{align*}
& \left(a^{3}-x^{3}\right)^{\frac{2}{3}}=\left\{a^{3}\left(1-\frac{x^{3}}{a^{3}}\right)\right\}^{\frac{2}{3}}=a^{2}\left(1-\frac{x^{3}}{a^{3}}\right)^{\frac{2}{5}} ; \tag{13}\\
& \therefore \frac{a^{3}}{\left(a^{3}-x^{3}\right)^{\frac{2}{3}}}=\frac{a^{3}}{a^{2}\left(1-\frac{x^{3}}{a^{3}}\right)^{\frac{2}{3}}}=a\left(1-\frac{x^{3}}{a^{3}}\right)^{-\frac{2}{3}}
\end{align*}
$$

Comparing $\left(1-\frac{x^{3}}{a^{3}}\right)^{-\frac{2}{3}}$ with $(a+b)^{n}$, we have $a=1$, $b=-\frac{x^{3}}{a^{3}}, n=-\frac{2}{3}$.
$\therefore\left(1-\frac{x^{3}}{a^{3}}\right)^{-\frac{2}{3}}=1-\frac{2}{3} \times-\frac{x^{3}}{a^{3}}-\frac{\frac{2}{3}\left(-\frac{2}{3}-1\right)}{1.2}\left(-\frac{x^{3}}{a^{3}}\right)^{2}$
$-\frac{\frac{2}{3}\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)}{1.2 .3}\left(-\frac{x^{3}}{a^{3}}\right)^{3}-, \& \mathrm{c}$.
$=1+\frac{2}{3} \cdot \frac{x^{3}}{a^{3}}+\frac{2 \cdot 5 x^{6}}{3 \cdot 6 a^{6}}+\frac{2 \cdot 5 \cdot 8 x^{9}}{3 \cdot 6 \cdot 9 a^{9}}+, \& c$.
$\therefore a\left(1-\frac{x^{3}}{a^{3}}\right)^{-\frac{2}{3}}=a+\frac{2}{3} \frac{x^{3}}{a^{2}}+\frac{2 \cdot 5 x^{6}}{3 \cdot 6 a^{5}}+\frac{2 \cdot 5 \cdot 8 x^{9}}{3 \cdot 6 \cdot 9 a^{8}}+, \& c$.

Article 323. (16).

(1) $\sqrt{9+1}=\sqrt{9\left(1+\frac{1}{9}\right)}=3 \sqrt{\left(1+\frac{1}{y}\right)} ;$ (See Formula, Art. 322.)

$$
\begin{aligned}
& \sqrt{1+\frac{1}{9}}= 1+\frac{1}{2} \times \frac{1}{9}-\frac{1}{2^{3}} \times \frac{1}{9^{2}}+\frac{1}{2^{4}} \times \frac{1}{9^{3}}-\frac{5}{2^{6}} \times \frac{1}{9^{4}}+, \& c . 。 \\
&=1+.055555-.001543+.000085 \\
&-.000005+, \& c .,=1.054092
\end{aligned}
$$

and $1.054092 \times 3=3.16227+$.
(2) $\sqrt[3]{27+3}=\sqrt[3]{27\left(1+\frac{1}{9}\right)}=3 \sqrt[3]{1+\frac{1}{9}}$;

$$
\begin{aligned}
& \sqrt[3]{1+\frac{1}{9}}=1+\frac{1}{3} \times \frac{1}{9}-\frac{1}{3^{2}} \times \frac{1}{9^{2}}+\frac{1}{3^{2}} \times \frac{5}{9^{4}}-\frac{1}{3^{3}} \times \frac{10}{9^{5}}+, \& c . \\
& =1+.037037-.001371+.000084-.000006 \\
& =1.035744 \text {; and } 1.035744 \times 3=3.10723+
\end{aligned}
$$

(3) $\sqrt[3]{27-3}=\sqrt[3]{27\left(1-\frac{1}{9}\right)}=3 \sqrt[3]{\left(1-\frac{1}{9}\right)}$.

The development of $\left(1-\frac{1}{9}\right)^{\frac{1}{3}}$ is the same as that of $\left(1+\frac{1}{3}\right)^{\frac{1}{3}}$, except that all the terms after the first are negative. To get the result accurately requires that we should calculate five terms of the series after the first. These carried to nine places of decimals are
—. 037037037 -. 001371742 —. 000084675 —. $000006272-.000000511-, \& c$.
Subtracting these from 1, and multiplying the remainder by 3 , we have $\sqrt[3]{24}=2.8844992+$.
(4) $\sqrt[4]{256+4}=\sqrt[4]{256\left(1+\frac{1}{64}\right)}=4 \sqrt[4]{1+\frac{1}{64}}$;
$\sqrt[4]{1+\frac{1}{64}}=1+\frac{1}{4} \times \frac{1}{64}-\frac{1}{4} \times \frac{3}{8} \times \frac{1}{64^{2}}+$, \&c.,
$=1+.003906-.000022+, \& c .,=1.003884$, and $1.003884 \times 4=4.01553+$.
(5)
$\sqrt[7]{128-20}=\sqrt[7]{128\left(1-\frac{5}{3} 2\right)}=2 \sqrt[4]{1-3.5}$.
In calculating the value of each term, the shortest method is to find it from the preceding term. Thus, by considering the formula, Art. 322, we notice that each term in the development after the first, is equal to the preceding term, multiplied by two factors, one of which is $\frac{b}{a^{a^{2}}}$, and the others successively $\frac{1}{n}, \frac{n-1}{2 n}, \frac{2 n-1}{3 n}, \frac{3 n-1}{4 n}, \frac{4 n-1}{5 n}$, and so on; therefore calling the terms $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and so on, we have
$\sqrt[7]{1-\frac{5}{3} \cdot 2}=1-\frac{1}{7} \cdot \frac{5}{3} \mathrm{~A}-\frac{3}{7} \cdot \frac{5}{32} \mathrm{~B}-\frac{1}{2} \frac{3}{1} \cdot \frac{5}{3} \mathrm{C}-\frac{5}{7} \cdot \frac{5}{32} \mathrm{D}$

- $\frac{27}{8} \cdot \frac{5}{3} \mathrm{E} \mathrm{E}-, \& \mathrm{c} .=1$-. $0223214-.0014947$-. 0001446
$-.0000161-.0000019=.9760213$, and $.9760213 \times 2$ $=1.95204+$.

THE DIFFERENTIAL METHODOF SERIES.

Article 325.

2) Here $n=2, a=1, b=4, c=9$.
$\therefore \mathrm{D}_{2}=1-2 \times 4+\frac{2(1) 9}{1.2}=1-8+9=2$.
(3) Here $n=3, a=1, b=3, c=6, d=10$.
$\therefore \mathrm{D}_{5}=-1+3 \times 3-\frac{3(2) 6}{1.2}+\frac{3(2)(1) 10}{1.2 .3}=-1+9-18+16$ $=0$.
(4) Here $n=5, a=1, b=3, c=9, d=27, \varepsilon=81, f=243$.
$\therefore D_{5}=-1+15-90+270-405+243=32$.
(5) Here $n=5, a=1, b=\frac{1}{2}, c=\frac{1}{4}, d=\frac{1}{8}, e=\frac{1}{16}, f=\frac{1}{3} \frac{12}{2}$.

- $\mathrm{D}_{5}=-1 \cdot-2 \frac{1}{2}-\frac{5 \cdot 4}{1 \cdot 2 \cdot \frac{1}{4}}+\frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} \cdot \frac{1}{8}-\frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4^{-1}} \frac{1}{16}$
$+\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \cdot \frac{1}{3} \frac{1}{2}=-1+2 \frac{1}{2}-2 \frac{1}{2}+1 \frac{1}{4}-\frac{5}{16}+\frac{1}{3} \frac{1}{2}=\frac{1}{4}-\frac{5}{16}$ $+\frac{1}{3}=-\frac{1}{3}$.

Article 326.

(3) Here $a=1, D_{1}=3, D_{2}=2$, and $D_{3}=0$.
$\therefore 15^{\text {th }}$ term $=1+(15-1) 3+\frac{14.13}{1.2} \times 2=1+42+182$
$=225$.
$n^{\text {lin }}$ term $=1+(n-1) 3+\frac{(n-1)(n-2)}{1.2} \times 2=n^{2}$.
(4) Here $a=1, \mathrm{D}_{1}=4, \mathrm{D}_{2}=6, \mathrm{D}_{3}=4, \mathrm{D}_{4}=1, \mathrm{D}_{5}=0$.
$\therefore 12^{\text {in }}$ term $=1+11 \times 4+\frac{11.10}{1.2} \times 6+\frac{11 \cdot 10.9}{1.2 .3} \times 4$
$+\frac{11 \cdot 10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3 \cdot 4} \times 1=1+44+330+660+330=1365$.
(5) Here $a=1, \mathrm{D}_{1}=2, \mathrm{D}_{8}=1, \mathrm{D}_{\mathrm{s}}=0$.
$\therefore n^{\text {th }}$ term $=1+(n-1) 2+\frac{(n-1)(n-2)}{1.2}=\frac{n^{2}+n}{2}$.
$=\frac{n(n+1)}{2}$
(6) Here $a=1, D_{1}=3, D_{2}=3, D_{3}=1, D_{4}=0$.
$\therefore n^{\text {th }}$ term $=1+(n-1) 3+\frac{(n-1)(n-2)}{1.2} \times 3$
$+\frac{(n-1)(n-2)(n-3)}{1.2 .3} \times 1$
$=\frac{6+18 n-18+9 n^{2}-27 n+18+n^{3}-6 n^{2}+11 n-6}{1.2 .3}$
$=\frac{n^{3}+3 n^{2}+2 n}{1.2 .3}=\frac{n\left(n^{2}+3 n+2\right)}{1.2 .3}=\frac{n(n+1)(n+2)}{1.2 .3}$.
(7) Multiplying the factors together, the terms are 70, 252 $594,1144,1950$, and so on.
Here $a=70, D_{1}=182, D_{2}=160, D_{3}=48, D_{4}=0$.
$\therefore 9^{\text {th }}$ term $=70+8 \times 182+\frac{8 \times 7}{1.2} \times 160+\frac{8 \cdot 7 \cdot 6}{1.2 .3} \times 48$
$=70+1456+4480+2688=8694$.
(8) Here the terms are $2,12,30,56$, and so on ; hence $a=2, D_{1}=10, D_{2}=8, D_{3}=0$.
$\therefore n^{\text {th }}$ term $=2+(n-1) 10+\frac{(n-1)(n-2)}{2} \times 8$
$=2+10 n-10+4 n^{2}-12 n+8=4 n^{2}-2 n$.

Article 327.

(3) Here $a=1, \mathrm{D}_{1}=2, \mathrm{D}_{2}=1, \mathrm{D}_{3}=0$.
\therefore Sum of n terms $=n+\frac{n(n-1)}{1.2} \times 2+\frac{n(n-1)(n-2)}{1.2 .3} \times 1$
$=\frac{6 n+6 n^{2}-6 n+n^{3}-3 n^{2}+2 n}{1 \cdot 2 \cdot 3}=\frac{n^{3}+3 n^{2}+2 n}{1.2 \cdot 3}$
$=\frac{n(n+1)(n+2)}{1.2 .3}$.
(4) Here $a=3, \mathrm{D}_{1}=8, \mathrm{D}_{2}=12, \mathrm{D}_{3}=6, \mathrm{D}_{4}=0$.

19
\therefore Sum of 20 terms $=20 \times 3+\frac{20.19}{1.2} \times 8+\frac{20.19 .18}{1.2 .3}$ $\times 12+\frac{20 \times 19 \times 18 \times 17}{1.2 .3 .4} \times 6=60+1520+13680+29070$
$\doteq 44330$.
(5) Here the terms are $6,24,60,120,210$, and so on ; hence $a=6, \mathrm{D}_{1}=18, \mathrm{D}_{2}=18, \mathrm{D}_{3}=6$, and $\mathrm{D}_{4}=0$.
\therefore Sum of 20 terms $=20 \times 6+\frac{20 \times 19}{1.2} \times 18$
$+\frac{20 \times 19 \times 18}{1.2 .3} \times 18+\frac{20 \times 19 \times 18 \times 17}{1.2 .3 .4} \times 6=120+3420$ $+20520+29070=53130$.
(6) Here $a=1, \mathrm{D}_{1}=7, \mathrm{D}_{2}=12, \mathrm{D}_{3}=6, \mathrm{D}_{4}=0$.
\therefore Sum of n terms $=n+\frac{n(n-1)}{1.2} \times 7+\frac{n(n-1)(n-2)}{1.2 .3}$
$\times 12+\frac{n(n-1)(n-2)(n-3)}{1.2 \cdot 3.4} \times 6=\frac{4 n}{4}+\frac{14 n^{2}-14 n}{4}$
$+\frac{8 n^{3}-24 n^{2}+16 n}{4}+\frac{n^{4}-6 n^{3}+11 n^{2}-6 n}{4}$
$=\frac{n^{4}+2 n^{3}+n^{2}}{4}=\frac{n^{2}}{4}\left(n^{2}+2 n+1\right)=\left[\frac{1}{2} n(n+1)\right]^{2}$.
(7) Here $a=1, D_{1}=3, D_{2}=3, D_{3}=1, D_{4}=0$. \therefore Sum of n terms $=n+\frac{n(n-1)}{1.2} \times 3+\frac{n(n-1)(n-2)}{1.2 .3} \times 3$ $+\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}=\frac{24 n}{24}+\frac{36 n^{2}-36 n}{24}$
$+\frac{12 n^{3}-36 n^{2}+24 n}{24}+\frac{n^{4}-6 n^{3}+11 n^{2}-6 n}{24}$
$=\frac{n^{4}+6 n^{3}+11 n^{2}+6 n}{24}=\frac{n\left(n^{3}+6 n^{2}+11 n+6\right)}{24}$
$=\frac{n(n+1)(n+2)(n+3)}{24}$.
As the direct method of factoring $n^{4}+6 n^{3}+11 n^{2}+6 n$, is a worl of some difficulty to the learner, we shall explain the operation.

It is evident from Articles 234 and 253, and the principle is proved directly in Art. 395, that if we put $n \cdot+6 n^{3}+11 n^{2}+6 n=0$ and find the values of n, which we may suppose to be a, b, c, d, then the factors of the expression will be $n-a, n-b, n-c, n-d$

By proceeding to solve the equation

$$
n^{4}+6 n^{3}+11 n^{2}+6 n=0,
$$

according to the method explained in Art. 243, we have $\left(n^{2}+3 n\right)^{2}$ $+2\left(n^{2}+3 n\right)=0$; from this equation we find $n^{2}+3 n=0$, or -2. From the equation $n^{2}+3 n=0$, we have $n=0$, or -3 ; and from the equation $n^{2}+3 n=-2$, we have $n=-1$, or $-2 ; \therefore$ the factors required are $n, n+1, n+2$, and $n+3$.
(8) We must find this series by making $n=1,2,3$, and so on; thus, if $n=1$, the first term is 1 ; if $n=2$ the second term is 16 ; if $n=3$, the third term is 63 ; in like manner we find the fourth term is 160 , the fifth term 325 , and so on. Hence, we find $a=1, \mathrm{D}_{1}=15, \mathrm{D}_{2}=32, \mathrm{D}_{3}=18, \mathrm{D}_{4}=0$.
\therefore Sum of 25 terms $=25+\frac{25.24}{1.2} \times 15+\frac{25.24 .23}{1.2 .3} \times 32$
$+\frac{25 \cdot 24 \cdot 23 \cdot 22}{1 \cdot 2 \cdot 3.4} \times 18=25+4500+73600+227700$
$=305825$.

PILINGOF CANNON BALLSAND SIIELLS.

Articles 328-332.

(3) Comparing the number 15 with Formula B in Art. 332, wo have $n=15$.
\therefore number $=\frac{n(n+1)(2 n+1)}{6}=\frac{15 \times 16 \times 31}{6}=1240$.
(4) See Formula C, Art. 332, $l=52$, and $n=34 \frac{1}{6}$;
$n(n+1)(3 l-n+1)=\frac{34}{6} \times 35 \times(156-34+1)=\frac{17}{3} \times 35$ $\times 123=17 \times 35 \times 41=24395$.
(5) Number of balls in a complete triangular pile of which each side of the base is 25 , is (Art. 332),
$\frac{1}{6} n(n+1)(n+2)=\frac{25}{6} \times 26 \times 27=25 \times 13 \times 9=2925$.
Since the number of balls in a side of the top course is

13, the number in a side of the pile that is wanting is 12, hence the number in this pile is $\frac{12}{6} \times 3 \times 14=364$. $\therefore 2925-364=2561$, the number required.
(6) Number in the pile considered as complete, (Art. 332),
$=\frac{n}{6}(n+1)(n+2)=\frac{38}{6} \times 39 \times 40=19 \times 13 \times 40=9880$.
Since there are 15 courses, and the number of balls is one less in each course than in the next preceding course therefore $38-15=23$ is the number of balls in a side of the incomplete pile, and the number in this pile is ${ }^{23} \times 24 \times 25=23 \times 4 \times 25=2300$.
$\therefore 9880-2300=7580$, the number required.
(7) Number in the pile considered as complete (Art. 332),
$=\frac{n}{6}(n+1)(2 n+1)=\frac{44}{6} \times 45 \times 89=22 \times 15 \times 89=29370$.
Number of balls in a side of the pile that is wanting is 21 , and the number in the incomplete pile is
${ }_{6}^{21} \times 22 \times 43=7 \times 11 \times 43=3311$.
$\therefore 29370-3311=26059$, the number in the incomplete square pile.
(8) $\sqrt{1521}=39=$ number of bails in a side of the base course, $\sqrt{169}=13=$ " " " " top " ${ }^{39} \times 40 \times 79=13 \times 20 \times 79=20540$, the number of balls in the pile considered as complete.
$13-1=12$, the number of balls in a side of the base of the pile that is wanting ; and $\frac{12}{6} \times 13 \times 25=650$.
$\therefore 20540-650=19890$, the number of balls in the insom. plete pile.
(9) Here we have the equation (Art. 332),
${ }_{1}^{1} n(n+1)(3 l-n+1)=6440$,
in which $n=20$, to find l.

$$
\begin{aligned}
& \therefore \quad \frac{20}{6} \times 21(31-1.9)=6440 \text {, } \\
& 70(36-19)=6440 \text {, } \\
& 3 l-19=92 \text {, and } l=37 \text {. }
\end{aligned}
$$

$37 \times 20=740$, the number of balls in the base.

110, Here we have the proportion
$\frac{1}{6} n(n+1)(n+2):{ }_{6}^{1} n(n+1)(2 n+1):: 6: 11$.
Placing the product of the means equal to the product of the extremes, and canceling $\frac{1}{6} n(n+1)$ on each side, we have $12 n+6=11 n+22$,
whence $n=16$, the number of balls in a side of the base of each.
$\frac{1}{6} n(n+1)(n+2)={ }_{6}^{16} \times 17 \times 18=816=$ balls in tr. pile, $\frac{1}{6} n(n+1)(2 n+1)=\frac{16}{6} \times 17 \times 33=1496=" \quad$ " sq. pile.
(11) Since the number of balls in each side increases by 1 as we descend, and since there are 7 courses below the upper one, therefore $36+7=43$, and $17+7=24$, are the number of balls in the longer and shorter sides of the lower course,
${ }_{i}^{1} n(n+1)(3 l-n+1)={ }_{6}^{?}{ }_{6}^{4} \times 25(129-24+1)=10600$,
the number of balls in the pile considered as complete. It is evident that 35 and 16 are the number of balls in the longer and shorter sides of the pile that is wanting, hence the number of balls in this pile, is
${ }^{1} \frac{6}{6} \times 17(105-16+1)=4080$.
$\therefore 10600-4080=6520$, the number of balls in the incom. plete pile.

INTERPOLATIONOFSERIES.

Article 333-335.

(1) Since the $4^{\text {th }}$ differences vanish, we have (Art. 325),
$e-4 d+6 c-4 b+a=0$, where $a=3, c=15$
$d=30$, and $e=55$, to find b.
$\therefore 55-4 \times 30+6 \times 15-4 b+3=0$,
whence $b=7$.
Having the terms of the series, viz. . $3,7,15,30,55$, we readily find the first terms of the several orders of differences (Art. 325) to be $\mathrm{D}_{1}=4, \mathrm{D}_{2}=4, \mathrm{D}_{3}=3$, and $\mathrm{D}_{4}=0$, therefore by making $n=6,7$, and 8 successively, and substituting the values of $\mathrm{D}_{1}, \mathrm{D}_{2}$, and D_{3} in the formula

$$
a+(n-1) \mathrm{D}_{1}+\frac{(n-1)(n-2)}{1.2} \mathrm{D}_{2}+\frac{(n-1)(n-2)(n-3)}{1.2 .3} \mathrm{D}_{2},
$$

we obta:n the $6^{\text {th }}$, $7^{\text {th }}$, and $8^{\text {th }}$ terms. Thus the $6^{\text {th }}$ term is

$$
\begin{aligned}
& 3+5 \times 4+5 \times 4 \times 2+\frac{5 \times 4 \times 3}{1 \times 2 \times 3} \times 3 \\
= & 3+20+40+30=93 .
\end{aligned}
$$

$7^{\text {th }}$ term is $3+6 \times 4+6 \times 5 \times 2+\frac{6 \times 5 \times 4}{1 \times 2 \times 3} \times 3=3+24-460$ $+60=147$.
$8^{\text {th }}$ term is $3+7 \times 4+7 \times 6 \times 2+\frac{7 \times 6 \times 5}{1 \times 2 \times 3} \times 3=3+28+84$ $+105=220$.
'2) Let $x=$ the $5^{\text {uh }}$ term, then writing down the terms, and finding the respective orders of differences, we have
$1,18,30,50 x$, 132,209 ,

$$
\begin{gathered}
, 12,20, x-50,132-x, 77, \quad, \\
5,8, x-70,182-2 x, x-55, \\
3, x-78,252-3 x, 3 x-237, \\
x-81,330-4 x, 6 x-489, \\
411-5 x, 10 x-819, \\
15 x-1930 .
\end{gathered}
$$

$\therefore 15 x-1230=0$, and $x=82$.
Or, thus, since the $\epsilon^{\text {th }}$ differences vanish, or become $0, \mathrm{rt}$ is merely necessary to find the first term of the $6^{\text {th }}$ order, by moans of the Vormula, Art. 325, by calling $n=6$, $a=11, b=18, \& c$., thus,
$1-n b+\frac{n(n-1)}{1.2} c-\frac{n(n-1)(n-2)}{1.2 .3} d+\frac{n(n-1)(n-2)(n-3)}{1.2 .3 .4} x$
$-\frac{n(n-1)(n-2)(n-3)(n-4)}{1.2 .3 .4 .5} f$
$+\frac{(n-1)(n-2)(n-3)(n-4)(n-5)}{1.2 .3 .4 .5 .6} g=0 ;$

- $11-6 \times 18+\frac{6 \times 5}{2} \times 30-\frac{6 \times 5 \times 4}{2 \times 3} \times 50+\frac{6 \times 5 \times 4 \times 3}{2 \times 3 \times 4} x$
$-\frac{6 \times 5 \times 4 \times 3 \times 2}{2 \times 3 \times 4 \times 5} \times 132+\frac{6 \times 5 \times+\times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4 \times 5 \times 6} \times 209=0$;
$11-108+450-1000+15 x-792+209=0$,
whence $15 x=1230$, and $x=82$.
(3) Calling the respective given logarithms, a, b, d, and ϵ_{1} since c is wantıng, we have, by the formula, Art. 325, $e-4 d+6 c-4 b+a=0$.
From this equation, by substituting the values of $a, z d$. and e, we readily find $c=2.0128372$.
(4)

| Nos. | Cuhe Roots. | 1st Diff | 2nd Diff. | Mean of
 2nd Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 3.91487 | | | |
| 62 | 3.95789 | 4302 | -91 | |
| 64 | 4. | 4211 | -91 | -89 |
| 66 | 4.04124 | 4124 | -87 | |

Here $t=\frac{1}{2}, d=4211, d^{\prime}=-89$, (Art. 335), and
$t\left(d+\frac{t-1}{2} d^{\prime}\right)=\frac{1}{2}\left(4211+\frac{\frac{1}{2}-1}{2} \times-89\right)=\frac{1}{2}(4211+22)$
$=2116$; and $3.95789+.02116=3.97905$.
(5) Let $a^{2},(a+1)^{2},(a+2)^{2}, \& c$, be a series of squares, and let them be developed, and their differences be taken as below:

$$
\begin{array}{rrr}
a^{2}, a^{2}+2 a+1, a^{2}+4 a+1, a^{2}+6 a+9, \& c \\
2 a+1, & 2 a+3, & 2 a+5, \& c \\
2, & 2, \& \epsilon
\end{array}
$$

The second differences are constant, and a table of squares may be found as follows :

Let us commence with $50^{2}=2500$, and $51^{2}=2601$; whose difference is 101 ; then since the second differences are constant and equal to 2 , the difference between the squares of 51 and 52 will be $101+2=103$, and this added to 2601 will give the square of 52 ; and so on, as in the following table:

$2500=50^{2}$	$2809=53^{2}$
$\frac{101}{2601}=51^{2}$	$\frac{107}{2916}=54^{2}$
$\frac{103}{2704}=52^{2}$	$\frac{109}{3025}=55^{2}$
$\frac{105}{2809}=53^{2}$	$\underline{111}$
3136	$=56^{2}$.

In a manner rearly similar, a table of cube mumoers may be computed.

/ INFINITESERIES.

Articles 336-338.

(2) Since $q=1, p=1$, and $n=1,2,3, \& c$.

$$
\therefore\left\{\begin{array}{l}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+, \& c ., \text { ad inf. } \\
-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+, \& c .,\right) \text { ad inf. }
\end{array}\right\}=1=\text { sum }
$$

$$
\left\{\begin{array}{l}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \cdot \cdots \frac{1}{n} \tag{3}\\
-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \cdot \frac{1}{n}+\frac{1}{n+1}\right)
\end{array}\right\}=1-\frac{1}{n+1}=\frac{n}{n+1} .
$$

(4) Since $q=1$, and $p=3$,
$\therefore\left\{\begin{array}{r}1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+, \& c ., \\ -\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+, \& c .\right)\end{array}\right\}=1+\frac{1}{2}+\frac{1}{3}=1 \frac{5}{6}$,
and $\frac{\mathbf{1}_{\text {th }}}{p}$ of this sum $=\frac{1}{1} \frac{1}{8}=$ sum required
(5) Since $q=1, p=2$, and $n=1,2,3, \& c$.
$\therefore\left\{\begin{array}{r}1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+, \& c ., \\ -\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+, \& c .\right)\end{array}\right\}=1+\frac{1}{2}=\frac{3}{2}$,
and $\frac{\mathbf{1}^{\text {th }}}{}$ of this sum $=\frac{1}{2}$ of $\frac{3}{2}=\frac{3}{4}$.
(6) To find the series let $n=1,2,3,4, \& c$., successively, the ${ }^{6}$ the terms are
$\frac{1}{1.5}+\frac{1}{2.6}+\frac{1}{3.7}+\frac{1}{4.8}+, \& c$.
Also, $q=1$, and $p=4$.
$\therefore\left\{\begin{array}{r}1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+, \& c ., \\ -\left(\frac{1}{5}+\frac{1}{6}+, \& c .\right)\end{array}\right\}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{2}{1} \frac{1}{2}$
and $\frac{1}{p}$ th of this sum $=\frac{1}{4}$ of $\frac{25}{12}=\frac{2}{4} \frac{5}{8}$.
(7) Dividing each term of this series by 2 , it becomes $\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+, \& c$.
The sum of this series has been found (see exanple 2 .) ta be 1 therefore the sum of the given series is $1 \times 2=0$.
(8) Multiplying each term of this series by 3×4, or 12 , it becomes $\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+$, \&c., the sum of which has been found to be 1 ; therefore the sum of the series is $1 \div 12=\frac{1}{12}$.

RECURRINGSERIES.

Articles $339-343$.

(2) Here $\mathrm{A}=1, \mathrm{~B}=6 x, \mathrm{C}=12 x^{2}, \mathrm{D}=48 x^{3}, \mathrm{E}=120 x^{4}, \& \mathrm{c}$.

Making $x=1$, and substituting in the formula, (Art. 341). we have $p=\frac{12 \times 48-6 \times 120}{12 \times 12-6 \times 48}=1, \eta=\frac{12 \times 120-48 \times 48}{12 \times 12-6 \times 48}=6$ 。 (Art. 343), $\mathrm{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x-q x^{2}}=\frac{1+6 x-x}{1-x-6 x^{2}}=\frac{1+5 x}{1-x-6 x^{2}}$.
(3) Here $\mathrm{A}=1, \mathrm{~B}=2 x, \mathrm{C}=3 x^{2}, \mathrm{D}=4 x^{3}, \mathrm{E}=5 x^{4}$.

Making $x=1$, and applying formula (Art. 341), we have $p=\frac{3 \times 4-2 \times 5}{3 \times 3-2 \times 4}=2, q=\frac{3 \times 5-4 \times 4}{3 \times 3-2 \times 4}=-1$.
(Art. 343), $\mathrm{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x-q x^{2}}=\frac{1+2 x-2 x}{1-2 x+x^{2}}=\frac{1}{(1-x)^{2}}$.
(4) Here $\mathrm{A}=\frac{a}{c}, \mathrm{~B}=-\frac{a b x}{c}, \mathrm{C}=\frac{a b^{2} x^{2}}{c^{3}}, \mathrm{D}=-\frac{a b^{3} x^{3}}{c^{4}}, \& \mathrm{c}$.

If we make $x=1$, and apply the formula, (Art. 341), we shall find $p=-\frac{b}{c}$, and $q=0$, but the scale of relation is easily seen to be $-\frac{b}{c}$, since if any coëfficient is nult:plied by this quantity it will give the coëficient of the next following term.
(Art. 343), $\mathrm{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x}=\frac{\frac{a}{c}-\frac{a b x}{c^{2}}+\frac{a b x}{c^{2}}}{1+\frac{\operatorname{lix}}{c}}=\frac{a}{c+b x}$.
(5) H $\in \mathrm{e}=0, \mathrm{~B}=x, \mathrm{C}=x^{2}$, \&cc, and the scale of relation is that is $p=1$, and $\eta=0$.
$\therefore \mathbf{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x}=\frac{0+x-0}{1-x}=\frac{x}{1-x}$.
(6) Here $\mathrm{A}=0, \mathrm{~B}=x, \mathrm{C}=-x^{2}, \& \mathrm{c}$., and the scale of reaticn is -1 , that is $p=-1$, and $q=0$.
$\therefore \boldsymbol{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x}=\frac{0+x-0}{1+x}=\frac{x}{1+x}$.
(7) Here $\mathrm{A}=1, \mathrm{~B}=2 x, \mathrm{C}=8 x^{2}, \mathrm{D}=28 x^{3}, \mathrm{E}=100 x^{4}$.

Making $x=1$, and applying formula, (Art. 341), we have $p=\frac{8 \times 28-2 \times 100}{8 \times 8-2 \times 28}=3, q=\frac{8 \times 100-28 \times 28}{8 \times 8-2 \times 28}=2$.
(Art. 343), $\mathrm{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x-q x^{2}}=\frac{1+2 x-3 x}{1-3 x-2 x^{2}}=\frac{1-x}{1-3 x-2 x^{2}}$.
(8) Here $\mathrm{A}=1, \mathrm{~B}=3 x, \mathrm{C}=5 x^{2}, \mathrm{D}=7 x^{3}, \mathrm{E}=9 x^{4}+$, \&c.

Making $x=1$, and applying the formula, (Art. 341), we have $p=\frac{5 \times 7-3 \times 9}{5 \times 5-3 \times 7}=2, q=\frac{5 \times 9-7 \times 7}{5 \times 5-3 \times 7}=-1$.
(Art. 343), $\mathrm{S}=\frac{\mathrm{A}+\mathrm{B}-\mathrm{A} p x}{1-p x-q x^{2}}=\frac{1+3 x-2 x}{1-2 x+x^{2}}=\frac{1+x}{(1-x)^{2}}$.
(9) Here $\mathrm{A}=1, \mathrm{~B}=4 x, \mathrm{C}=9 x^{2}, \mathrm{D}=16 x^{3}, \mathrm{E}=25 x^{4} ; \& \mathrm{c}$.

Making $x=1$, and applying the formula. (Art. 341.)
The values of p and q thus found will not reproduce the series, hence we must apply the equations in Art. 342, and find the values of p, q, and r, when $x=1$. These equa tions give $\quad 16=9 p+4 q+r$;

$$
25=16 p+9 q+4 r ;
$$

$$
36=25 p+16 q+9 r
$$

From these equations we find $p=3, q=-3$, and $r=1$.
We shall now extend the principle of Art. 343 to finding the sum of an infinite recurring series when the scale of relation onsists of three terms.

The $1^{s t}$ term $\mathrm{A}=\mathrm{A}$;
the $2^{\text {nd }} " \mathrm{~B}=\mathrm{B}$;
the $3^{\text {rd }}$ " $\mathrm{C}=\mathrm{C}$;
the $4^{t s}$ " $\mathrm{D}=\mathrm{C} p x+\mathrm{B} q x^{2}+\mathrm{A} r x^{3}$;
the $5^{\text {th }}$ " $\mathrm{E}=\mathrm{D} p x+\mathrm{C} q x^{2}+\mathrm{B} r x^{3}$;
the $6^{\text {th }}$ " $\quad \mathrm{F}=\mathrm{E} p x+\mathrm{D} q x^{2}+\mathrm{C} r \boldsymbol{x}^{3}$;
$\& c,=\& c$.

Now if S represents the required sum, by adding together the corresponding members of these equalities, and ob serving that $\mathrm{C}+\mathrm{D}+\mathrm{E}+, \& \mathrm{c},, \mathrm{S}-\mathrm{A}-\mathrm{B} ; \mathrm{B}+\mathrm{C}+\mathrm{D}+$, \&c., $=S-A$, we have

$$
\mathrm{S}=\mathrm{A}+\mathrm{B}+\mathrm{C}+(\mathrm{S}-\mathrm{A}-\mathrm{B}) p x+(\mathrm{S}-\mathrm{A}) \eta x^{2}+\mathrm{S} r x^{3},
$$

whence $\mathrm{S}=\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}-(\mathrm{A}+\mathrm{B}) p x-\mathrm{A} q x^{2}}{1-p x-q x^{2}-r x^{3}}$.
Substituting in this formula the values of A, B, C, and of p, q, and r; we have

$$
\mathrm{S}=\frac{1+4 x+5 x^{2}-3 x-12 x^{2}+3 x^{2}}{1-3 x+3 x^{2}-x^{3}}=\frac{1+x}{(1-x)^{3}} .
$$

REVERSIONOFSERIES.

Articles $344-346$.

(1) Comparing the series with the formuka, (Art. 344), we have $a=+1, b=-1, c=+1, d=-1, \& c$., heace by substitution, we have

$$
\begin{aligned}
x & =\frac{1}{1} y-\frac{-1}{1} y^{2}+\frac{2-1}{1} y^{3}-\frac{-1+5-5}{1} y^{4}+, \& c . \\
& =y+y^{2}+y^{3}+y^{4}+, \& c .
\end{aligned}
$$

(2) Herc $a=1, b=1, c=1, d=1$, \&c.

$$
\begin{aligned}
\cdot x & =\frac{1}{1} y-\frac{1}{1} y^{2}+\frac{2-1}{1} y^{3}-\frac{1-5+5}{1} y^{4}+, s \mathrm{c} . \\
& =y-y^{2}+y^{3}-y^{4}+, \& \mathrm{c} .
\end{aligned}
$$

(3) Comparing the coëficients with those of the serics in Art. 346, we have $a=2, b=3, c=4, d=5$, \&c.

$$
\begin{aligned}
\therefore x & =\frac{1}{2} y-\frac{3}{16} y^{3}+\frac{27-8}{128} y^{5}-, \& c . \\
& =\frac{1}{2} y-\frac{3}{16} y^{3}+\frac{1}{128} y^{5}-, \& c .
\end{aligned}
$$

(4) Applying the formula, (Art. 345), we have $a^{\prime}=1, a=-2$, and $b=3$.

$$
\begin{aligned}
\therefore x & =-\frac{1}{2}(y-1)+\frac{3}{8}(y-1)^{2}-\frac{18-0}{32}(y-1)^{3}+, \& c_{.}, \\
& =-\frac{1}{2}(y-1)+\frac{3}{8}(y-1)^{2}-\frac{9}{16}(y-1)^{3}+, \& c .
\end{aligned}
$$

(5) See formula, Art. 345. Here $a^{\prime}=1, a=1, b=-2,0==+$ $\therefore x=\frac{1}{1}(y-1)+\frac{2}{1}(y-1)^{2}+\frac{8-1}{1}(y-1)^{3}-\frac{0+10-40}{1}$
$(y-1)^{4}$,
$=y-1+2(y-1)^{2}+7(y-1)^{3}+30(y-1)^{4}+, \& c$.
(6) See formula, Art. 344. Here $a=1, b=\frac{1}{2}, c=\frac{1}{6}, d=2^{4}$, $\& c$.
$\therefore x=\frac{1}{1} y-\frac{1}{2} y^{2}+\frac{\frac{1}{2}-\frac{1}{6}}{1} y^{3}-\frac{\frac{1}{2} 4-\frac{5}{1}+\frac{5}{8}}{1} y^{4}+, \& \mathrm{c} .$,

$$
=y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+, \& c .
$$

(7) Let $x=\mathrm{A} y+\mathrm{B} y^{2}+\mathrm{C}^{3}+, \& c$. ;

$$
\text { then } x^{2}=\mathrm{A}^{2} y^{2}+2 \mathrm{AB} y^{3}+, \& \mathrm{c} . ;
$$

$$
x^{3}=\quad \mathrm{A}^{3} y^{3}+, \& c .
$$

Substituting these values for x, x^{2}, x^{3}, . . in the second member of the given equation, and transposing the first member, we have

Hence $\mathrm{A} g-1=0, \mathrm{~A}^{2} h+\mathrm{B} g-a=0$, $\Lambda^{3} k+2 \Lambda B h+g C-l=0 ;$
whence, $\mathrm{A}=\frac{1}{g}, \mathrm{~B}=\frac{1}{g}\left(a-\mathrm{A}^{2} h\right)=\frac{1}{g}\left(a-\frac{h}{g^{2}}\right)=\frac{1}{g^{3}}\left(a g^{2}-h\right)$
$\mathrm{C}=\frac{1}{g}\left(b-\mathrm{A}^{3} k-2 \mathrm{AB} h\right)$
$=\frac{1}{g}\left\{h-k-2 \frac{1}{g^{3}}-\frac{1}{g}\left(a g^{2}-h\right) h\right\}$
$=\frac{b g^{4}-k g-2 h\left(a g^{2}-h\right)}{g^{5}}$,
$\ldots x=\frac{y}{g}+\frac{\left(a g^{2}-h\right) y^{2}}{g^{3}}+\frac{\left[b g^{4}-k g-2 h\left(a y^{2}-h\right)\right] y^{3}}{g^{3}}+. \& c$.

CONTINUEDFRACTIONS; L،OGARITHMS; EXPONENTIALEQUATIONS; INJEREST AND ANNUITIES.

CONTINUED FRACTIONS.

Articles 347-356.

(1) Dividing the greater term by the less, the last divisor by the last remainder, and so on, the quotients are $3,4,5$, and 6; hence the integral fractions are $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$, and $\frac{1}{6}$, and the onnverging fractions are
$\frac{1}{3}, \frac{1 \times 4}{3 \times 4+1}=\frac{4}{13}, \frac{4 \times 5+1}{13 \times 5+3}=\frac{21}{68}, \frac{21 \times 6+4}{68 \times 6+13}=\frac{130}{421}$.
The $2^{\text {nd }}$ and $3^{\text {rd }}$ examples are worked in a similar manner.
(4) Making 3900 the numerator, and 10963 the denominator of a fraction, and proceeding as in the preceding examples, the successive quotients, that is the denominators of the respective integral fractions, are 2, 1, 4, 3, 2, 2, 1, 30; hence the first approximate fraction is $\frac{1}{2}$, the second, $\frac{1 \times 1}{2 \times 1+1}=\frac{1}{3}$; the third, $\frac{1 \times 4+1}{3 \times 4+2}=\frac{5}{14}$; and so on.
(5) Making 4900 the numerator, and 11283 the denominator of a fraction, and proceeding as above, we find the successive quotients to be $2,3,3,3,2,7,1,1,1,2$; hence the approximating fractions are $\frac{1}{2} ; \frac{1 \times 3}{2 \times 3+1}=\frac{3}{7}$;
$\frac{3 \times 3+1}{7 \times 3+2}=10 ; \frac{10 \times 3+3}{23 \times 3+7}=\frac{3}{76} ; \quad ; \quad \begin{aligned} & 33 \times 2+10 \\ & 76 \times 2+23\end{aligned}=\frac{79}{75}$, \&.
(6) Making 1 the numerator, and 3.1415926 the denominator of a fraction, or 10000000 and 31415926, and dividing the greater by the less, the less by the remainder, and so on, the quotients are $3,7,15,1,243, \& c$. Operating in a similar nanner with 1 , and 3.1415927 , the quotients are $3,7,15,1,354, \& c$., then finding the approximating or converging fractions, corresponding to these quotients, we have $\frac{1}{3} ; \frac{1 \times 7}{3 \times 7+1}=\frac{7}{2} ; \frac{7 \times 15+1}{22 \times 15+3}=\frac{10}{2} \frac{0}{3} ; \frac{106 \times 1+7}{333 \times 1+22}$ $=1 \frac{1}{3} \frac{3}{5}$.

The ratio of 113 to 355 , that is $\frac{35}{1} \frac{5}{3}=3.1415929+$; and since the true ratio lies between 3.141526 , and 3.1415927 , and since the difference between 3.1415939 and $3.1+15926$ is .0000003 , therefore $\frac{1}{3}, \frac{1}{5}$ expresses the part that the diameter is of the circum ference to within less than .0000003 .
(7) 5 hrs, $48 \mathrm{~min} ., 49 \mathrm{sec} .,=20929$ seconds, $24 \mathrm{hrs},=86400$ "

Operating with these numbers as hefore, we find the ruccessive quotients to be
$4,7,1,3,1,16,1,1,15$; and from these the converging fractions are readily found.
(8) Dividing the greater term br the less, the less by the remainder, and so on, the quotients are $1,1,2,1,1,1,3,2,1,1,2,3$; and the successive converging fractions found from these ure $\frac{1}{7}, \frac{1}{2}, \frac{3}{3}, \frac{4}{7}, \frac{7}{12}, \frac{11}{19}$, $\frac{40}{69}, \& c$., whence $\frac{11}{19}$ is the required fraction.
(9) In solving this example it is most convenient to consider 1 as the numerator, wnd 27.321661 the denominator, and then invert the resulting converging fractions. Dividing 27.321661 by 1 , or 27321661 by 1000000 , as in the preceding examples, the quotients are
$27,3,9,5,2, \& c$. ; these give for approximating fractions $\frac{1}{2}=\frac{3}{8}, \frac{98}{7} 6 \frac{8}{3}, \frac{143}{3} \frac{1}{9} 07, \& c$., hence the required ratios are $\frac{27}{1}, \frac{82}{3}, \frac{765}{26}, \frac{3,07}{1+\frac{107}{3}}, \& c$.
(10) Referring to Art. 353, we have $a=1$, hence $\sqrt{\overline{2}}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}+, \& c .}$
The integral fractions are $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \& c .$,
" converging fractions are $\frac{1}{2}, \frac{2}{5}, \frac{5}{1}, \frac{1}{2} \frac{1}{2}$, \&c.
Adding 1 to each of these we have $\frac{3}{2}, \frac{7}{5}, \frac{17}{12} \frac{4}{2} \frac{1}{9}, \& c$
(11) Referring to Art. 353, we have $a=2$, and $2 a=4$,

The int. fractions are $\quad \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4} \frac{1}{4}, \& c$.
" conv. fractions are $\frac{1}{4}, \frac{4}{17}, \frac{17}{72} \quad \frac{72}{3} 05, \frac{3}{12} \frac{05}{42}$, \&c.
Adding 2 to each of these, we have $\frac{9}{4}, \frac{3}{1} \frac{8}{7}, \frac{16}{7} \frac{1}{2}, \frac{68}{3} \frac{82}{5}, \frac{2}{12} \frac{8}{4} \frac{9}{2}$, \&c.
Now the fourth fraction being in an even place is less than the true value, and the fifth being in an odd pace is greater than the true value, therefore $\sqrt{5}$ is greater than $\frac{6}{3} \frac{82}{5}$, ano sess than $\frac{2}{1889} 9$
(12) Since $8^{1}=8$, and $8^{2}=64, x$ lies between 1 and 2
hence let $x=1+\frac{1}{y}$.
$\therefore 8^{1+\frac{1}{y}}=32$, or $8 \times 8^{\frac{1}{y}}=32$,
or, $8^{\frac{1}{y}}=\frac{32}{8}=4$.
or, $8=4^{y}$, by raising both members to the y power,
Now since $4^{1}=4$, and $4^{2}=16$, the value of y lies between 1 and 2 , hence let $y=1+\frac{1}{2}$.
$\therefore 4^{1}+\frac{1}{2}=8$, or $4 \times 4^{\frac{1}{2}}=8$, or $4^{\frac{1}{2}}=2$;
raising both members to the z power, we have
$2^{z}=4$, whence $z=2$.
$\cdot x=1+\frac{1}{1+\frac{1}{2}}=1+\frac{2}{3}=\frac{5}{3}$.
(13) $3^{x}=25 ; 3^{2}=9$, and $3^{3}=27$.
$\therefore x=2+\frac{1}{x^{\prime}}$.
$3^{2}+\frac{1}{x^{3}}=15$, or $3^{2} \times 3^{\frac{1}{x^{\prime}}}=15$, or $3^{\frac{1}{x^{\prime}}}=\frac{15}{9}=\frac{6}{3}$.
Since $3^{\frac{1}{x^{\prime}}}=\frac{5}{3}$, we have $\left(\frac{5}{3}\right)^{x^{\prime}}=3$;
here $x^{\prime}=2+\frac{1}{x^{\prime \prime}}$,
$\because\left(\frac{5}{3}\right)^{2}+\frac{1}{x^{\prime \prime}}=3$, or $\left(\frac{5}{3}\right)^{2} \times\left(\frac{5}{3}\right)^{\frac{1}{x^{\prime \prime}}}=3$,
whence $\left(\frac{5}{3} \frac{1}{x^{x^{\prime}}}=\frac{27}{2}\right.$,
or, $\left(\frac{27}{2}\right)^{x \prime}=\frac{5}{3}$;
here $x^{\prime \prime}=6+\frac{1}{x^{\prime \prime \prime}}$.
$\therefore x=2+\frac{1}{2+\frac{1}{6}+, \& c .}$
hence the approximating fraction to be added to 2_{3} is $\frac{1}{2}$, or $\frac{6}{13}$;
$\frac{6}{13}=2.46+$, which is true to within $\left(\frac{1}{13}\right)^{2}=\frac{1}{169}$.
This method of finding the value of x is more curions then aseful, as the same thing may be accomplished directly, and wi•h hut little labor, by means of logarithms.

Thus $x=\frac{\log \cdot 15}{\log .3}=\frac{1.1760913}{.4771213}=2.465$ nearly.

LOGARITHMS.

Article $\mathbf{3 6 6}$.

(1) The result in this example follows directly from Art. 360, the pupil, however, may prove the principle generally in the case of three factors; thus,

$$
\begin{aligned}
& a^{x}=\mathrm{N} \text {. (1), } \\
& a^{x^{\prime}}=\mathrm{N}^{\prime} \text {. (2), } \\
& a^{x^{\prime \prime}}=\mathrm{N}^{\prime \prime} \text {. (3). }
\end{aligned}
$$

Multiplying equations (1), (2), and (3) together, we have $a^{x} \times a^{x^{\prime}} \times a^{x^{\prime \prime}}=a^{x: x^{\prime}+x^{\prime \prime}}=\mathrm{NN}^{\prime} \mathrm{N}^{\prime \prime}$.
But, by the definition of logarithms, if we consider a the base of the system, then x, x^{\prime}, and $x^{\prime \prime}$ are the logarithms of $\mathrm{N}, \mathrm{N}^{\prime}$, and $\mathbf{N}^{\prime \prime}$, and ($x+\boldsymbol{x}^{\prime}+x^{\prime \prime}$) is the logarithm of $\mathbf{N N}^{\prime} \mathbf{N}^{\prime \prime}$, hence, the sum of the logarithms of three numbers is equal to the logarithm of their product.
(2) By Art. 361, log. $(a b c)=\log \cdot(a b c)-\log .(d e) \cdot$ but
$\log .(a b c)=\log . a+\log . b+\log . c$; and $\log .(d e)=\log . d$ $+\log . e$; hence log. $\left(\frac{a b c}{d e}\right)=\log . a+\log . b+\log . c$
$-(\log . d+\log . e)=\log . a+\log . b+\log . c-\log . d-$ $\log . e$.
(3) By Art. 360, log. $\left(a^{m} \cdot b^{n} \cdot c^{p} \cdot\right)=\log \cdot a^{m}+\log \cdot b^{n}+\log \cdot c^{p}$; but (Art. 362), log. $a^{m}=m \log . a, \log . b^{n}=n \log . b$, and log. $c^{p}=p$ log. c.
$\therefore \log .\left(a^{m} \cdot b^{n} \cdot c^{p}\right)=m \log . a+n \log . b+p \log . c$.
(4) Log. $\left(\frac{a^{m} \cdot b^{n}}{c^{p}}\right)=\log \cdot\left(a^{m} \cdot b^{n}\right)-\log \cdot c^{p}=m \log \cdot a+$ $n \log . b-p \log . c$.
(5) $\quad a^{2}-x^{2}=(a+x)(a-x)$, and log. $\left(a^{2}-x^{2}\right)$
$=\log \cdot\{(a+x)(a-x)\}=\log \cdot(a+x)+\log \cdot(a-x)$.
(6) Since log. $\left(a^{2}-x^{2}\right)=\log .(a+x)+\log .(a-x)$, $\frac{1}{2} \log \cdot\left(a^{2}-x^{2}\right)=\frac{3}{3} \log \cdot(a+x)+\frac{1}{2} \log .(a-x)$, but, (Art. 363), $\frac{1}{2} \log \cdot\left(a^{2}-x^{2}\right)=\log .\left(a^{2}-x^{2}\right)^{\frac{1}{2}}$, or, log. $\sqrt{a^{2}-x^{2}}$;
$\therefore \log . \sqrt{a^{2}-x^{2}}=\frac{1}{2} \log .(a+x)+\frac{1}{2} \log .(a-x)$.
(7) $a^{3} \times \sqrt[4]{a^{3}}=a^{3} \times a^{\frac{3}{4}}=a^{\frac{15}{4}}$; and $\log .\left(a^{\frac{15}{4}}\right)=\frac{1.5}{4} \log . a$, or, $3 \frac{3}{4} \log . a$.
(8) $\frac{\sqrt{a^{2}-x^{2}}}{(a+-x)^{2}}=\frac{\sqrt{a^{2}-x^{2}}}{\sqrt{(a+x)^{4}}}=\sqrt{\frac{(a+x)(a-x)}{(a+x)(a+x)^{3}}}=\sqrt{\frac{a-x}{(a+x)^{2}}}$;
$\log \cdot \frac{a-x}{(a+x)^{3}}=\log \cdot(a-x)-\log \cdot(a+x)^{3}$,

$$
=\log \cdot(a-x)-3 \log \cdot(a+x) ;
$$

hence $\log . \sqrt{\frac{a-x}{(a+x)^{3}}}$, or $\log \cdot \frac{\sqrt{a^{2}-x^{2}}}{(a+x)^{2}}$

$$
=\frac{1}{2}\{\log .(a-x)-3 \log .(a+x)\} ;
$$

or, $={ }_{2}^{3} \log .(a-x)-\frac{3}{2} \log (a+x)$; but the first form is the best.

Article 370.

(1) Since $14=2 \times 7 \quad \therefore$ log. $14=\log .2+\log .7$,

Since $15=3 \times 5 \quad \therefore \log .15=\log .3+\log .5$;
Since $16=2^{4} \quad \therefore$ log. $16=(\log .2) \times 4$;
Since $18=3^{2} \times 2 \therefore \log .18=(\log .3) \times 2+\log .2 ;$
Since $20=2^{2} \times 5 \quad \therefore$ log. $20=(\log .2) \times 2+\log .5$;
Since $21=3 \times 7 \quad \therefore \log .21=\log .3+\log .7$;
Since $24=2^{3} \times 3 \quad \therefore \log .24=(\log .2) \times 3+\log .3$;
Since $25=5^{2} \quad \therefore \log .25=(\log .5) \times 2$;
Since $27=3^{3} \quad \therefore$ log. $27=(\log .3) \times 3$;
Since $28=2^{2} \times 7 \therefore \log .28=(\log .2) \times 2+\log .7$;
Since $30=3 \times 10 . . \log .30=\log .3+\log .10$.
(2) The numbers will evidently be those that can be formed by multiplying together any two or more of the factors 2 , $3,5,7$, either of which may be taken more than once if necessary, thus,
$2^{5}, 5 \times 7,3^{2} \times 2^{2}, 2^{3} \times 5,2 \times 3 \times 7,3^{2} \times 5,2^{4} \times 3,7^{2}, 5^{2} \times 2$, $3^{3} \times 2,2^{3} \times 7,2^{2} \times 3 \times 5,3^{2} \times 7,2^{6}, 2 \times 5 \times 7,2^{3} \times 3^{2}, 5^{2} \times 3$, $2^{4} \times 5,3^{1}, 2^{2} \times 3 \times 7,3^{2} \times 2 \times 5,2^{5} \times 3,7^{2} \times 2$.

Article. 377.

Remare.-The pupil will find the logarithm of 2, as given in all tho sables in common use to be .30103000 ; from this he may perhaps infer that there is some defect in the calculations in this article in the A'gebra On the contrary, however, the result there given, as far as it is carried, ia absolutely correct, the logarithm of 2 to 20 places of decimals being 30102999566398119521. (See Hution's Tables.)
(i) To find the logarithm of 3 ,

$$
\begin{aligned}
& \text { Log. } \mathrm{P}=\text { log. } 2 \text {. }=30102999 \text {; } \\
& \frac{2 \mathrm{~A}}{2 \mathrm{P}+1}=\frac{.86858896}{5} \ldots \ldots=.17371779 \text {; (B) } \\
& \frac{\mathrm{B}}{3(2 \mathrm{P}+1)^{2}}=\frac{.17371779}{3 \times 5^{2}} \cdots \cdots=.00231623 \text {; } \\
& \frac{3 \mathrm{C}}{5(2 \mathrm{P}+1)^{2}} \cdot \cdots \cdot . . .0005_{5559} \cdot(\mathrm{D})
\end{aligned}
$$

$$
\begin{align*}
& \frac{5 \mathrm{D}}{7(2 \mathrm{P}+1)^{2}} \cdots=.00000159 ;(\mathrm{E}) \\
& \frac{7 E}{9(2 P+1)^{2}} \cdots \cdot \cdot=.00000005 \text {; } \tag{F}\\
& \therefore \text { Common log. of 3 }=.47712124 \text {. }
\end{align*}
$$

(2) To find the logarithm of 5 ,

Here $\mathrm{P}=4$, and $\log . \mathrm{P}=2 \log .2=.60205999$;
$\frac{2 \mathrm{~A}}{2 \mathrm{P}+1}=\frac{.86858896}{9} \ldots . . .=.09650988 ;(\mathrm{B})$
$\frac{B}{3\left(2 P^{P}+1\right)^{2}}=\frac{.09650988}{3 \times 9^{2}} \cdots \cdots=.00039716 ;$
$\frac{3 \mathrm{C}}{5(2 \mathrm{P}+\mathrm{J})^{2}} \cdots \cdots \cdots \cdot . . .=.00000294 ;(\mathrm{D})$
$\frac{5 \mathrm{D}}{7(2 \mathrm{P}+1)^{2}} \cdots \cdot=.00000003$;
log. 5. = 69897000.
The last figure of the term E is taken to the nearest unit.
It is not necessary, however, except as an exercise, to calculate the common logarithm of 5 , since $5=\frac{10}{2}$, and \log. $5=\log$. 10. $\log .2=1-\log .2$
13) To find the logarithm of 7.

Here $\mathrm{P}=6$, and $\log .6=\log .2+\log .3=.77815123$;

$$
\begin{aligned}
& \frac{2 \mathrm{~A}}{2 \mathrm{P}+1}=\frac{.86858896}{13} \cdots \cdots .=.06681453 \text {; (B) . } \\
& \frac{\mathrm{B}}{3(2 \mathrm{P}+1)^{2}}=\frac{.06681453}{3 \times 13^{2}} \cdots \cdots \cdot=.00013178 \text {; (C) } \\
& \frac{3 \mathrm{C}}{5(2 \mathrm{P}+1)^{2}} \cdots \cdots \cdots \cdot=.00000047 ;\left(D_{i}\right. \\
& \text { log. } 7 \text {. }=84509801 \text {. }
\end{aligned}
$$

(4) To find the logarithm of 11 .

Here $\mathrm{P}=10$, and \log. P . . . $=1.00000000$;
$\frac{2 \mathrm{~A}}{2 \mathrm{P}+1}=\frac{.86858896}{21} \ldots .=.04136138 ;(\mathrm{B}$,
$\frac{B}{3(2 P+1)^{2}} \cdots \cdots \cdots \cdot0003126$

Article 379.

(1) First. No system of logarithms can have a negative base since the odd powers of a negative number are negative, and therefore the positive numbers corresponding to the odd powers of the base would not be represented.
Second. The base of a system of logarithms cannot be 1 , for the simple reason that every power of 1 is 1 .
(2) Calling A and A^{\prime} the moduli of two different systems whose logarithms are denoted by log. and log.' ; if B and C are two numbers, from Art. 376, we have

$$
\begin{aligned}
& \log . \mathrm{B}: \log ^{\prime} \cdot \mathrm{B}:: \mathrm{A}: \mathrm{A}^{\prime}, \\
& \log . \mathrm{C}: \log ^{\prime} \cdot \mathrm{C}:: \mathrm{A}: \mathrm{A}^{\prime},
\end{aligned}
$$

whence $\log . \mathrm{B}: \log . \mathrm{C}:: \log ^{\prime} \cdot \mathrm{B}: \log ^{\prime} \cdot \mathrm{C}$,

$$
\text { or, } \frac{\log \cdot \mathrm{C}}{\log \cdot \mathrm{~B}}=\frac{\log ^{\prime} \cdot \mathrm{C}}{\log ^{\prime} \cdot \mathrm{B}^{\mathrm{B}}} \text {; }
$$

that is, the logarithms of the same numbers, in two different systems, have the same ratio to each other.
Example. The ratio of the common logarithm of 2 to that of 10, is $\frac{1.00000}{.30103}=3.321928$; and the ratio of the Naperian logarithm of 2 to that of 10 , is $\frac{2.302585}{.643147}=3.321928$.
(3) Let N and $\mathrm{N}+1$ be two consecutive numbers, the differ. ence of their logarithnis, taken in any system, will ha $\log .(\mathrm{N}+1)-\log . \mathrm{N}$.
But (Art. 351), log. $(\mathrm{N}+\mathrm{i})-\log . \mathrm{N} \doteq \log \cdot\left(\frac{\mathrm{N}+\mathrm{I}}{\mathrm{N}}\right)$
$=\log .\left(1+\frac{1}{\mathrm{~N}}\right)$, a quantity which approaches to the \log arithm of 1 (which is zero, Art. 367) in proportion as $\stackrel{1}{\mathbf{N}}$ decreases, that is, as N increases. Hence, the difference of the logarithms of two onneculion mumhers thess, as the numbers themestas are greater.

Example. The difference of the logarithms of 9 and 10 is $1-.9542425=.0457575$; and the difference of the logarithms of 999 and 1000 , is $3-.9995655=.0004345$.

EXPONENTIALEQUATIONA。

Articles 382-383.

(2). $20^{x}=100, \therefore x \log .20=\log .100$, whence $x=\frac{\log .100}{\log .20}=\frac{2.000000}{1.301030}=1.53724$.
(3) $100^{x}=250, \therefore x \log .100=\log .250$,
whence $x=\frac{\log .250}{\log .100}=\frac{2.397940}{2.000000}=1.19897$.
(3) Since $2^{2}=4$, and $3^{3}=27$, we easily see that x lies be tween 2 and 3, and that it is near the former. We also readily find that it is less than 2.2 ; then let us assume 2 and 2.2 for the two numbers.

> First Supposition. Second Supposition.
> $x=2 ; \log .2=301030 x=2.2 ; \log .2 .2=.342423$
> $x \log . x$. . $=.601060 x \log . x$. . $=.753330$
> true no. $\log .5=.698970$ true no. log. $5=.698970$
> error -. 097910 error. . +.054360

Difference of results $=.152270$; diff. assumed nos. $=.2$;
As .152270:. $2:$: . 05436 :.0713, correction, $2.2-.0713=2.1287$.
By trial, we find that x is greater than 2.12, and less than 2.13 therefore, let 2.12 and 2.13 be two new assumed numbers.

First Supposition.	Second Supposition.
$x:=2.12$; log. 2.12 $=326336$	$x=2.13 ; \log \cdot 2.13=.328380$
$\log . x$. . . $=6.691832$	x log. x. . . $=609449$
o. 698970	true no. 698970
ror . . . 二.0071	+.000

Diff. cf results $=.007617$; diff. of assumed nos. $=.01$.
As . 007617 : . $01:: .000479: .000628$ correction.
Hence $x=2.13-.000628=2.129372$ nearly.
(4) $x^{x}=42.8454, \log \cdot 42.8454=1.631904$.

Since $3^{3}=27$, and $4^{4}=256$, we see that x lies between 3 and 4 , and that it is near the former. By a further trial it is soon found to be greater than 3.2 , and less than 3.3 ; let these therefore ber the two assumed numbers.

$$
\begin{aligned}
& \text { First Supposition. Second Supposition. }
\end{aligned}
$$

As .094316:.1::.015424:.0163, correction,
hence $x=2.2+-.0163=2.2163$ nearly.
By trial we find that $x=2.2163$, gives $x \log . x=1.631809$, but that $x=2.2164$ gives $x \log . x=1.631905$, hence $x=2.2164$ nearly.
(6) Log. $2=0.301030$, and $0.301030 \times 64=19.265920$, which is the logarithm of the number expressing the $64^{\text {t/ }}$ power of 2 ; and since the index is 19 , the number of places of figures will be $19+1=20$. (Art. 358.)
(7) $a^{b x+d}=c$,
$(b x+d) \log . a=\log . c ;$
or, $b x \log . a=\log . a-d \log . a$;
whence $x=\frac{\log \cdot c-d \cdot \log \cdot a}{b \cdot \log \cdot a}$.
(8) $a^{m x} \cdot b^{n x}=c$.
$\log \cdot\left(a^{m x} \cdot b^{n x}\right)=\log \cdot c$;
but $\log .\left(a^{m x} . b^{n x}\right)=m x \log . a+n x \log . b$;
$\therefore m x \log . a+n x \log . b=\log . c$;
or, $x(m \log . a+n \log . b)=\log . c$;
whence $x=\frac{\log \cdot c}{m \log \cdot a+n \log . b}$.
(9) $c^{m x}=a . b^{n x-1}$.
$\log .\left(c^{m x}\right)=\log \cdot\left(a \cdot b^{n x-1}\right)=\log \cdot a+(n x-1) \log . b$,
$m x \log . c-n x \log . b=\log . a-\log . b ;$
$x(m . \log . c-n . \log . b)=\log . a-\log . b ;$
whence $x=\frac{\log . a-\log . b}{m \cdot \log \cdot c-n \cdot \log \cdot b}$.
(10) From the equation $m^{x-y}=n$, we have $(x-y) \log . m=\log . n$, or $x \log \cdot m-y \log \cdot m=\log . n$; dividing by $\log . m ; x-y=\log . n \div \log . m=\log \cdot \frac{n}{m}$;
from this, and the equation $x+y=a$, by adding and dividing by 2 , we find $x=\frac{1}{2}(a+\log . n \div \log . m)$, or, $x=\frac{1}{2}\left(a+\log \cdot \frac{n}{m}\right)$.
By subtracting and dividing by 2, we find
$y=\frac{1}{2}(a-\log \cdot n \div \log \cdot m)=\frac{1}{2}\left(a-\log \cdot \frac{n}{m}\right)$.
(11) From the equation $a^{x} \cdot b^{y}=c$, we have $\log \cdot\left(a^{x} \cdot b^{y}\right)=\log \cdot 0$ but log. $\left(a^{x} \cdot b^{y}\right)=\log . a^{x}+\log \cdot d^{y}=x \log \cdot a+y \cdot \log . b$.
$\therefore x . \log . a+y \log . b=\dot{l o g} . c$;
and $m y=n x$, or $y=\frac{n x}{m}$;
hence $x \log . a+\frac{n x}{m} \log . b=\log . c$;
or, $m . \log \cdot a \cdot x+n \cdot \log \cdot b . x=m . \log . c$;
whence $x=\frac{m \cdot \log \cdot c}{m \cdot \log \cdot a+n \cdot \log \cdot b}$;
$y=\frac{n x}{m}=\frac{n \cdot \log \cdot c}{m \cdot \log \cdot a+n \cdot \log \cdot b^{\circ}}$.
(12) First. lug. $2000=\log \cdot(1000 \times 2)=\log \cdot 1000+\log .2=$ $3+\log .2$, and $2^{x} .3^{z}=2000 ;$
$\log .\left(2^{x} \cdot 3^{z}\right)=\log .2000=3+\log .2$;
$\log .\left(2^{x} 3^{z}\right)=\log .2^{x}+\log .3^{z}=x . \log .2+z \cdot \log .3 ;$
$\therefore x$. log. $2+z . \log .3=3+\log .2$;
and $3 z=5 x$, or $z=\frac{5 x}{3}$;
hence $x . \log .2+\frac{5 x}{3} \cdot \log .3=3+\log .2$;
or, $3 \log .2 \cdot x+5 \log .3 . x=3(3+\log .2)$;
whence $x=\frac{3(3+\log .2)}{3 \log .2+5 \log .3}$;
and $z=\frac{5 x}{3}=\frac{5(3+\log \cdot 2)}{3 \log \cdot 2+5 \log .3}$.
(13) Let $a^{x}=z$, then $a^{2 x}=z^{2}$, and the equation becomes
$z^{2}-2 z=8$, or $z^{2}-2 z+1=9$;
whence $z= \pm 3+1=4$, or -2 .
$\therefore a^{x}=4$, or -2 ,
hence $x \log . a=\log .4$, or \log. (-2), but the last is inta missible (Art. 369) ; also, $4=2^{2}$, and log. $4=2$ log. 2 ;
$\therefore x . \log . a=2 \log .2$, and $x=\frac{2 \log .2}{\log . a}$.
(14) Let $2^{x}=z$, then $2^{2 x}=z^{2}$, and $z^{2}+z=12$.

From the equation $z^{2}+z=12$, we find $z=+3$, the negative value being omitted (Art. 369);
$\therefore 2^{x}=3$, and $x \log .2=\log .3$;
whence $x=\frac{\log .3 \pm}{\log .2}=\frac{477121}{.301030}=1.58496$.
(15) $2 a^{1 x}+a^{2 x}=a^{6 x}$, divide each side by $a^{2 x}$;
$2 a^{2 x}+1=a^{4 x}$,
or, $a^{4 x}-2 a^{2 x}=1$, let $a^{2 x}=z$, then
$z^{2}-2 z=1$;
$z^{2}-2 z+1=2$, and $z=\sqrt{2}+1$;
$\therefore a^{2 x}=\sqrt{2}+1$;
$2 x \log . a=\log .(\sqrt{2}+1)$, or $x \times 2 \log . a=\log .(\sqrt{2}+1)$, whence $x=\frac{\log .(\sqrt{2}+1)}{2 \log . a}$.
(16) Let $a^{x}=z$, then $z+\frac{1}{z}=b, 0=z^{2}-b z=-1$,
whence z or $a^{x}=\frac{b}{2} \pm \frac{1}{2} \sqrt{b^{2}-4}=\frac{1}{2}\left(b \pm \sqrt{b^{2}-4}\right) ;$
$\therefore x \log . a=\log \cdot \frac{1}{2}\left(b \pm \sqrt{b^{2}-4}\right) ;$
whence $x=\frac{\log \cdot \frac{1}{2}\left(b \pm \sqrt{b^{2}-4}\right)}{\log \cdot a}$.
(17) Here $x^{y}=y^{x}(1)$, and $x^{3}=y^{2}(2)$.

Extracting the y roat of both members of eq. (1), and the cube root of both members of eq. (2), we have
$x=y^{\frac{x}{v}}$, and $x=y^{\frac{2}{3}}$.

- $\frac{x}{4 \bar{y}}=y^{\frac{3}{3}}$, whence $\frac{x}{y}=\frac{2}{2}$, and $x=\frac{2}{3} y$;
$\therefore \frac{2}{3} y=y^{\frac{2}{3}}$; divide each member by $y^{\frac{9}{3}}$;
${ }_{\frac{2}{3}} y^{\frac{1}{3}}=1$, or $y^{\frac{1}{3}}=\frac{3}{2}$;
cubing each side $y=\binom{3}{2}^{3}=\frac{27}{8}=3 \frac{3}{8}$;
$x=\frac{2}{3} y=\frac{9}{3}$ of $\frac{27}{8}=9=2 \frac{1}{4}$.
(18) Here $\left(a^{2}-b^{2}\right)^{2(x-1)}=(a-b)^{2 x}$.

Extracting the square root of both members, we have $\left(a^{2}-b^{2}\right)^{(x-1)}=(a-b)^{x}$;
whence $(x-1) \log .\left(a^{2}-b^{2}\right)=x \log .(a-b)$;
but $\log .\left(a^{2}-b^{2}\right)=\log \cdot[(a+b)(a-b)]=\log .(a+b)$

+ log. $(a-b)$.
$\therefore(x-1)\{\log .(a+b)+\log .(a-b)\}=x \log .(a-b) ;$
or, $x \log .(a+b)+x \log .(a-b)-\log .(a+b)-\log .(a-b)$
$=x \log$. $(a-b)$;
omitting $x \log$. ($a-b$) on each side, and transposing,
$x \log .(a+b)=\log .(a+b)+\log .(a-b) ;$
whence $x=1+\frac{\log .(a-b)}{\log \cdot(a+b)}$.
(19) $\left(a^{4}-2 a^{2} b^{2}+b^{4}\right)^{x-1}=\left\{\left(a^{2}-b^{2}\right)^{2}\right\}^{x-1}=\left(a^{2}-b^{2}\right)^{2 x-2}$
$=\frac{\left(a^{2}-b^{2}\right)^{2 x}}{\left(a^{2}-b^{2}\right)^{2}}$;
and $(a-b)^{2 x}(a+b)^{-2}=\frac{(a-b)^{2 x}}{(a+b)^{2}}$;
$\therefore \frac{\left(a^{2}-b^{2}\right)^{2 x}}{\left(a^{2}-b^{2}\right)^{2}}=\frac{(a-b)^{2 x}}{(a+b)^{2}}$;
Extracting the square root of both members, we have
$\frac{\left(a^{2}-b^{2}\right)^{x}}{a^{2}-b^{2}}=\frac{(a-b)^{x}}{a+b} ;$
Lut $\left(a^{2}-b^{2}\right)^{x}=\{(a+b)(a-b)\}^{x}=(a+b)^{x}(a-b)^{x} ;$
$\therefore \frac{(a+b)^{x}(a-b)^{x}}{(a+b)(a-b)}=\frac{(a-b)^{x}}{a+b}$;
dividing both members by ($a-b)^{x}$, and multiplying dy 21
$a+b$, we have $\frac{(a+b)^{2}}{a-b}=1$, or $(a+b)^{x}=a-b$;
whence $x \log .(a+b)=\log .(a-b)$, and $x=\frac{\log .(a-b)}{\log .(a+b)}$
(20) Here $x^{y}=y^{x}(1)$, and $x^{p}=y^{r}(2)$.

From (1) $x_{\bar{x}}^{y}=y$, and from (2) $x_{\bar{q}}^{p}=y$;
$\therefore x^{\frac{y}{x}}=x_{9}^{\frac{p}{9}}$, and $\frac{y}{x}=\frac{p}{q}$;
or, $\frac{x^{\frac{p}{q}}}{x}=\frac{p}{q}$;
$\cdot x_{q}^{\frac{p}{q}-1}=\frac{p}{q}$, or $x^{\frac{p-q}{q}}=\frac{p}{q}$;
$\therefore x=\left(\frac{p}{q}\right)^{\frac{q}{p-q}}$;
$y=\frac{p}{q} x=\frac{p}{q}\left(\frac{p}{q}\right)^{\frac{q}{p-q}}=\left(\frac{p}{q}\right)^{\frac{q}{p-q}+1}=\left(\frac{p}{q}\right)^{\frac{p}{p-q_{0}}}$
(21) Let $x^{2}-4 x+5=z$, then $3^{2}=1200$, and $z \log \cdot 3=10 \mathrm{P}$ whence $z=\frac{\log \cdot 1200}{\log \cdot 3}=\frac{3.079181}{.477121}=6.4536$.
$\therefore x^{2}-4 x+5=6.4536$;
$x^{2}-4 x+4=5.4536$;
$x-2= \pm 2.33$,
$x=2 \pm 2.33=4.33$, or -0.33 .

INTERESTANDANIUYTES.

Articles $384-391$.

(1) $1+r=1.06$ and log. $1.06 \ldots=.025306$
$.025306 \times 100=t \log .(1+r) \cdot=2.530600$
$\log . \mathrm{P}=\log .1=0.000000$
$\log . A=\log .(339.30)=2.530600$
(2) This example is similar to the preceding; if we multiols .025306 by 1000 , the product is 25.306000 , which is the
\log. of the amount, and as the index is 25 , the corresponding natural number will contain $25+1=26$ figures. (Art. 358.)
(3) See Art. 386, Cor. 3. For 5 per cent. $R=1.05$; for 6 per cent. $R=1.06$; for 7 per cent. $R=1.07$; for 8 per cent., $R=1.08$.
For 5 per cent., $t=\frac{\log .2}{\log .1 .05}=\frac{.301030}{.021189}=14.206 \mathrm{yrs}$. ;
for 6 per cent., $t=\frac{\log .2}{\log .1 .06}=\frac{.301030}{.025306}=11.8956 \mathrm{yrs}$;
for 7 per cent., $t=\frac{\log .2}{\log \cdot 1.07}=\frac{.301030}{.029384}=10.2447 \mathrm{yrs}$.
for 8 per cent., $t=\frac{\log .2}{\log .1 .08}=\frac{.301030}{.033424}=9.0064 \mathrm{yrs}$.
(4) See Art. 386, Cor. 3. Here $m=10$, and $\mathrm{R}=1.05$. $\therefore t=\frac{\log .10}{\log \cdot 1.05}=\frac{1.000000}{.021189}=47.19 \mathrm{yrs}$.
(5) Let $x=$ the sum, then (Art. 386), $\mathrm{M}=\mathrm{P} \cdot \mathrm{R}^{t}$, and $\mathrm{P}=x . \mathrm{R}^{t}$:
whence $\frac{\mathrm{M}}{\overline{\mathrm{P}}}=\frac{\mathrm{P} \cdot \mathrm{R}^{t}}{x \cdot \mathrm{R}^{t}}=\frac{\mathrm{P}}{x}$, and $\therefore x=\frac{\mathrm{P}^{2}}{\mathrm{M}}$.
(6) Let x, y, z, denote the three shares, then we shall have $x+y+z=\mathbf{P}$;
also, $x . \mathrm{R}^{a}=y . \mathrm{R}^{b}=z . \mathrm{R}^{c}$, are the equations of condition;
whence $y=\mathrm{R}^{a-b} x$, and $z=\mathrm{R}^{a-c} x$;
$\therefore x+\mathrm{R}^{a-b} x+\mathrm{R}^{a-c} x=\mathrm{P}$;
whence $x=\frac{\mathrm{P}}{1+\mathrm{R}^{a-b}+\mathrm{R}^{a-c}}$.
Similarly, $y=\frac{\mathbf{P}}{1+\mathbf{R}^{b-a}+\mathbf{R}^{b-c}}$, and $z=\frac{\mathbf{P}}{1+\mathbf{R}^{c-a}+\mathbf{R}^{c-b}}$.
(7) If we take out the logarithm of 1.06, and multiply it by 20 , and take out the number corresponding thereto, we shall have 3.20713546 . Subtracting 1 from this, and dividing by .06 , the quotient is 36.785591 , which is tho amount of an annuity of $\$ 1$, for 20 years, at 6 per cent, 'Then multiplying this by 120 the product is $\$ 4414.27$.

In finding the $20^{\text {th }}$ power of 1.06 the tables of logarithuns is common use give a result too small. The learner may satisfy himself of this by actually involving 1.06 to the $20^{\text {th }}$ power. The ${ }^{\text {r remula }}$ for solving the question is found in Art. 390.
(8) See the Formula, Art. 391. $R^{i}=(1.05)^{30}=4.321942$, and $\frac{1}{\mathrm{R}^{t}}=.23137746 ; 1-\frac{1}{\mathrm{R}^{t}}=.76862254 ;$
$\frac{1}{\mathrm{R}-\mathrm{I}}\left(1-\frac{1}{\mathrm{R}^{t}}\right)=\frac{1}{.05}(.76862254)=15.37245$, the present value of an annuity of $\$ 1$, to be paid for 30 years: $15.37245 \times 250=3843.11+$.
(9) Here $p=\frac{a}{r \mathrm{R}^{n}}\left(1-\frac{1}{\mathrm{R}^{t}}\right)$ (Art. 392); $\mathrm{R}=1.05, n=10$, and $t=20 ; \mathrm{R}^{\prime}=(1.04)^{20}=2.191123 ;$
$\frac{1}{\mathrm{R}^{i}}=-45638697 ; 1-\frac{1}{\mathrm{R}^{i}}=.54361303$;
$\mathrm{R}^{n}=(1.04)^{10}=1.480244$,
${ }^{-} \mathrm{R}^{n}=.05920976$, and $\frac{1}{r \cdot \mathrm{R}^{n}}\left(1-\frac{1}{\mathrm{R}^{t}}\right)=9.181138$;
$9.181138 \times 112.50=\$ 1032.87+$.
(ic) The amount of $a \$$ at compound interest for n years, r being the rate per cent., is $a(1+r)^{n}$.
The amount of an annuity of $b_{\mathrm{W}}^{\mathrm{W}}$, for the same period, at the same rate, is $b \frac{(1+r)^{n}-1}{r}$ (Arts. 386 and 390).
$\therefore b \frac{(1+r)^{n}-1}{r}=a(1+r)^{n}$;
or, $b(1+r)^{n}-b=r a(1+r)^{n}$;
or, $b(1+r)^{n}-r a(1+r)^{n}=b$;
or, $(b-r a)(1+r)^{n}=b$;
or, log. $(b-r a)+n \log .(1+r)=\log . b$;

$$
n \log \cdot(1+r)=\log \cdot b-\log .(b-r a):
$$

$$
n=\frac{\log \cdot b-\log \cdot(b-r a)}{\log \cdot(1-r)}
$$

This formula also solves the following problem: "What eum must be paid annually to sink a given debt in a certain number of years, the interest on said debt being payable annually."

GENFRALTHEORYOF RQUATIONS.

Article 396.

Nots.- Al.hough the Synthetic Methol of Division is not explaiued thll Article 409, page 350, yet we shall employ it, instead of the common method, on account of its conciseness. The Teacher who prefers to use the Syuthetic method, can require his pupils to study Art. 409, before commencing the theory of equations.
(1) $1-11+23+35!-1$, since $x+1$ is the divisor,
$\frac{-1+12-35}{1-12+35+0}$
Ans. $x^{2}-12 x+35=0$.
(2) $1-9+26-24 \mid+3$, since $x-3$ is the divtsor,
$\frac{+3-18+24}{1-6+8+0}$
$\therefore x^{2}-6 x+8=0$;
whence (Art. 231), $x=4$ or 2.
(3) $1 \pm 0-7+6$

$$
\begin{aligned}
& \frac{+2+4-6}{1+2-3+0} \\
& \therefore x^{2}+2 x-3=0, \text { and (Art. 231), } x=1 \text {, or }-3 .
\end{aligned}
$$

(4) $1+2-41-42+360+3$, since $x-3$ is a divisor.

$$
\begin{aligned}
& \frac{+3+15-78-360}{1+5-26-120+0}-4, \text { since } x+4 \text { is a divisor, } \\
& \frac{-4-4+190}{1+1-30+0 .} \\
& \therefore x^{2}+x-30=0, \text { and (Art. } 231 \text {), } x=5, \text { or }-6 .
\end{aligned}
$$

(5) $1-3-5+9-2 \quad+1$, since $x-1$ is a divisor, $\frac{+1-2-7+2}{1-2-7+2+0}-2$, since $x+2$ is a divisor, $\frac{-2+8-2}{1-4+1+0}$
$\therefore x^{2}-4 x+1=0$ and (Art 231), $x=2+\sqrt{3}$, or $2-\sqrt{3}$

Article 398.

(2) $x=2 \therefore x-2=0$,
$x=3 \quad \therefore x-3=0$,
$x=-5 \quad \therefore x+5=0$.
. $(x-2)(x-3)(x+5)=x^{3}-19 x+30=0$.
(3) $x=3 \therefore x-3=0$,
$x=-2 \therefore x+2=0$,
$x=7 \therefore x-7=0$,
$\therefore(x-3)(x+2)(x-7)=x^{3}-8 x^{2}+x+42=0$.
(4) $x=0 \therefore x-0=0$,
$x=-1 \ldots x+1=0$,
$x=2 \cdots x-2=0$,
$x=-5 \quad \therefore x+5=0$.
$\therefore(x-0)(x+1)(x-2)(x+5)=x^{4}+4 x^{3}-7 x^{2}-10 x=0$
(5) $x=-2 . \therefore x+2=0$,
$x=+4 \quad \therefore x-4=0$,
$x=+4 \therefore x-4=0$.
$\therefore(x+2)(x-4)(x-4)=x^{3}-6 x^{2}+32=0$
(6) $x=1+\sqrt{3} \therefore x-1-\sqrt{3}=0$,
$x=1-\sqrt{3} \ldots x-1+\sqrt{3}=0$.
$\therefore(x-1-\sqrt{3})(x-1+\sqrt{3})=x^{2}-2 x-2=0$.
(7) $\quad x=1+\sqrt{2} \therefore x-1-\sqrt{2}=0$,
$x=1-\sqrt{2} \therefore x-1+\sqrt{2}=0$,
$x=2+\sqrt{3} \therefore x-2-\sqrt{3}=0$,
$x=2-\sqrt{3} \therefore x-2+\sqrt{3}=0$.
$\therefore(x-1-\sqrt{2})(x-1+\sqrt{2})(x-2-\sqrt{3})(x-2+\sqrt{3})$
$=\left(x^{2}-2 x-1\right)\left(x^{2}-4 x+1\right)=x^{4}-6 x^{3}+8 x^{2}+2 x-1=0$.
(8) It has been shown, see Art. 398, that the coefficient of the fouth term is equal to the sum of the products of all the roots tuken three and three with their signs changed. The roots with their signs changed are $-12,+1,-1,-3$,
-4 , and the sum of their products taken three and three
is $(2 \times 1 \times-1)+(2 \times 1 \times-3)+(2 \times 1 \times-4)$
$+(2 \times-1 \times-3)+(2 \times-1 \times-4)+(2 \times-3 \times-4)$
$+(1 \times-1 \times-3)+(1 \times-1 \times-4)+(1 \times-3 \times-4)$
$+(-1 \times-3 \times-4)=-2-6-8+6+8+24+3+4+12$
$-12=29$; and since x^{5} appears in the $1^{s t}$ term, $29 x^{2}$ is the fourth term.
(9) It is evident there will be 7 terms in the required equation, hence, the middle term will be the $4^{\text {th }}$, hence it is required to find the sum of the products of the numbers 5 , $3,1,-1,-2,-4$, taken three and three with their signs changed. But the shortest.method is to find the product of the several binomial factors, thus,
$(x-5)(x-3)(x-1)(x+1)(x+2)(x+4)$
$=\left(x^{2}-8 x+15\right)\left(x^{2}+6 x+8\right)\left(x^{2}-1\right)=x^{6}-2 x^{5}-26 x^{4}+28 x^{8}$ $+145 x^{2}-26 x-120$, where the middle term is $28 x^{3}$.
(10) We may take any two numbers as the other two roots, but the equation will be of the simplest form if we suppose the roots to be $+\sqrt{2}$, and $-\sqrt{-3}$, since this assumption will cause the middle terms of the binomial factors to cancel each other. Thus,
$(x-\sqrt{2})(x+\sqrt{2})(x+\sqrt{-3})(x-\sqrt{-3})=\left(x^{2}-2\right)\left(x^{2}+3\right)$
$=x^{4}+x^{2}-6=0$.

Article 400.

(1) Since $x^{2}-2 x-24=0$ is the same as $x^{2}+2 x-24=0$, except that the sign of the $2^{\text {nd }}$ term is changed, (the fourth being wanting,) and since the roots of the latter are +4 , . and -6 , therefore (Art. 400), the roots of the former are -4 and +6 .
(2) Since $x^{3}+3 x^{2}-10 x-24=0$, is the same as $x^{3}-3 x^{2}-10 x$ $+24=0$, with the signs of the alternate terms changed, and since the roots of the latter are $2,-3$ and 4 , therefore (Art. 400), the roots of the former are $-2 .+3,-4$.

Article 401.

(1) Dividing the given equation by $x+6=x-(-6)$, the quotient is $x^{2}-6 x+10=0$, of which the roots are $3+\sqrt{-1}$ and $3-\sqrt{-1}$.
(2) Dividing the given equation by $x-(-4)=x+4$, the quo tient is $x^{2}-4 x+1=0$, of which the roots are $2+\sqrt{3}$, and $2-\sqrt{3}$
(3) Since $x=3+\sqrt{2}$, and $x=3-\sqrt{2}$, therefore $(x-3-\sqrt{2})(x-3+\sqrt{2})=x^{2}-6 x+7$; dividing the given equation by this, the quotient is $x^{2}+2 x-2=0$, of which the roots are $-1 \pm \sqrt{3}$.
(4) Since one root is $2-\sqrt{3}$, therefore (Art. 401, Cor. 1,) $2+\sqrt{3}$ is another root, $(x-2+\sqrt{3})(x-2-\sqrt{3})=x^{2}-4 x+1$, and dividing is given equation by this, the quotient is $x-3$; leare $x-3=0$, and $x=+3$.
(5) Since $-\frac{1}{2}(3+\sqrt{-31})$ is one root of the given equation, therefore (Art. 401), $-\frac{1}{2}(3-\sqrt{-31})$ is another root ;
$\left[x+\frac{1}{2}(3+\sqrt{-3})\right]\left[x+\frac{1}{2}(3-\sqrt{-3})\right]=x^{2}+x(3)$ $+\frac{1}{4}[9-(-31)]=x^{2}+3 x+10$, and dividing the given equation by this, the quotient ir $x^{2}-3 x-4$; hence $x^{2}-3 x-4=0$, and $x=4$, or -1 .
(6) Since $+\sqrt{2}$ is one root of the given equation, theremore (Art. 410, Cor. 2), $-\sqrt{2}$ is another root, and three of the binomial factors of the given equation are $(x-\sqrt{2})(x+\sqrt{2})(x-3)=x^{3}-3 x^{2}-2 x+6$.
Dividing the given equation by this, the quotient is $x^{2}-7 x$ +10 ; hence $x^{2}-7 x+10=0$; from which $x=2$, and 5 .

Article 403.

Ex.2. If we substitute 5 for x in the equation $x^{3}-5 x^{2}-x$ $+1=0$, we have $-4=0$, and if we substitute 6 for x, we have $+31=0$, and since the results have contrary signs, one root lies ae: ween 5 and 6 , that is, 5 is the first figure of one of the ronts

TRANSFORMATION OFEOUATIONS.

Article 405.

(1) Here $x^{4}+7 x^{2}-4 x+3=0$; let $x=\frac{y}{3}$, then

$$
\frac{y^{4}}{81}+\frac{7 y^{2}}{9}-\frac{4 y}{3}+3=0, \text { multiply by } 81, \text { to clear ot fram }
$$ tions, $y^{4}+63 y^{2}-108 y+243=0$.

(2) Here $x^{4}+2 x^{3}-7 x-1=0$; , et $x=\frac{y}{5}$, then

$$
\begin{aligned}
& \frac{y^{4}}{625}+\frac{2 y^{3}}{125}-\frac{7 y}{5}-1=0, \text { and clearing of fractions } \\
& y^{4}+10 y^{3}-875 y-625=0
\end{aligned}
$$

(3) Here $x^{3}-3 x^{2}+4 x+10=0$; let $x=2 y$, then

$$
\begin{aligned}
& 8 y^{3}-12 y^{2}+8 y+10=0, \text { or, dividing by } 2, \\
& 4 y^{3}-6 y^{2}+4 y+5=0 .
\end{aligned}
$$

(4) Here $x^{3}+18 x^{2}+99 x+81=0$; let $x=3 y$, and change the signs of the alternate terms (Art. 400), then $27 y^{3}-18 \times 9 y^{2}+99 \times 3 y-81=0$, or dividing by 27 ,

$$
y^{3}-6 y^{2}+11 y-3=0 .
$$

(5) Here $x^{3}-2 x^{2}+\frac{1}{3} x-10=0$; let $x=\frac{1}{3} y$, then

$$
\begin{aligned}
& \frac{y^{3}}{27}-\frac{2 y^{2}}{9}+\frac{1}{y} y-10=0 ; \text { clearing of fractions, } \\
& y^{3}-6 y^{2}+3 y-270=0 .
\end{aligned}
$$

Articles $406-407$.

(1) Here $x^{3}-7 x+7=0$; let $y=x-1$, then $x=y+1$.

$$
\cdot(y+1)^{3}-7(y+1)+7=0 \text {, or } y^{3}+3 y^{2}-4 y+1=0 .
$$

(2) Here $x^{4}-3 x^{3}-15 x^{2}+49 x-12=0$, let $y=x-3$, hen $x=y+3 ; \therefore(y+3)^{4}-3(y+3)^{3}-15(y+3)^{2}+49(y+3)$ $-12=0$, or, by developing and reducing, $y^{4}+9 y^{3}+12 y^{2}-14 y=0$.
(3) Here $x^{3}-6 x^{2}+8 x-2=0$, and $x=y+2$.
$\therefore(y-+2)^{3}-6(y-2)^{2}+8(y+2,-2=0$, or, reducing, $y^{3}-4 y--2=0$.
(4) $x^{2}+2 p x-q=0$. Here $\mathrm{A}=+2 p, n=2$.
$\therefore r=-p$; hence $x=y-p$,
substituting; $(y-p)^{2}+2 p(y-p)-q=0$, or, reducing, $y^{2}-p^{2}-q=0$.

Articles 408-410.

(4) Let $y=x-3$, then it is required to divide the given equa tion, and the successive quotients, by $x-3$.
$1 \pm 0-27 \quad-36 \quad(+3$, since the divisor is $x-3$,

$$
\frac{+3}{+3} \frac{+9}{-18} \frac{-54}{-90} \therefore-90=1^{x} \mathrm{R}
$$

$$
\frac{+3}{+6} \frac{+18}{+0} \therefore 0=2^{n d} R .
$$

$$
\frac{+3}{\not+9} \therefore+9=3^{r d} \text { R. Ans. } y^{3}+9 y^{2}-90=0 .
$$

(5) $1 \pm 0-27-14 \quad+120(+3$, since the divisor is $x--3$,

$$
\frac{+3}{+3} \frac{+9}{-18} \frac{-54}{-68} \frac{-204}{-84} \therefore-84=1^{s t} \mathrm{R} .
$$

$$
\frac{+3}{+6} \frac{+18}{+0}=0 .
$$

$$
\frac{+3}{+9} \frac{+27}{\not+27} \ldots+27=3^{r d} \mathrm{R}
$$

$$
\frac{\frac{+3}{+12}}{\therefore+12=4^{\text {in }} R . . . ~}
$$

$$
\text { Ans. } y^{4}+12 y^{3}+27 y^{2}-68 y-84=0 .
$$

(6) $1-18-32+17+9(+5$, since the divisor

$$
\begin{aligned}
& \frac{+5}{-13} \frac{-65}{-97} \frac{-485}{-268} \frac{-2340}{-2331} \therefore-2331=1^{s t} R . \\
& \frac{+5}{-5}=40-685 \\
& \frac{-1}{-57}-1153 . \therefore-1153=2^{n d} \mathrm{R} . \\
& \frac{15}{-3}=152 \therefore-152=3^{r d} \mathrm{R} . \\
& \frac{+5}{+2} \therefore+2=4^{4 h} \mathrm{R} . \\
& \text { Ans. } y^{4}+2 y^{3}-152 y^{2}-1153 y-2331=0 .
\end{aligned}
$$

(7) We shall first diminish the roots by 1 , and then by .2 , in. dicating the remainders after each transformation by stars.

-6	+7.4	+ 7.92	-17.872	$\begin{aligned} & -.79232(+.1 .2 \\ & -7.552 \end{aligned}$	
+1	-5.	+ 2.4	+10.32		
-5	+2.4	+10.32	-7.552	-8.34432*	
+1	-4.	-1.6	+8.72	+. 34432	-
-4	$\overline{-1.6}$	+8.72	+1.168*	-8*	
+1	-3.	-4.6	+ .5536		
-3	-4.6	+4.12*	+1.7216		
+1	-2	-1.352	+ . 2784		
-2	$\overline{-6.6 *}$	\ddagger	+ 2.0000*		
+1	-. 16	- 1.376			
-1*	$\overline{-6.76}$	∓ 1.392			
+. 2	-. 12	- 1.392			
-. 8	$\overline{-6.88}$	$\mp{ }^{+0.000 *}$			
+. 2	-. 08				
-. 6	-6.96				
+2	- . 04				
-. 4	二7.*			"	
+. 2					
-. 2					
$+.2$					
$0{ }^{*}$	Ans	$y^{3}-7 y^{3}+2$	$-8=0$.		

8) Here $\mathrm{A}=-6, n=3, \therefore r=2$; hence $x=y+2$, or $y=x-2$.

$$
\begin{aligned}
& 1 \begin{array}{llll}
-6 & +7 & -2 & (+2 \text {, since the divisor is } x-2 .
\end{array} \\
& \frac{+2}{-4} \quad \frac{-8}{-1} \quad \frac{-2}{-4} \therefore-4=1^{n} \text { R. } \\
& \frac{+2}{-2} \quad \frac{-4}{-5} \therefore-5=2^{n d} \text { R. } \\
& \frac{ \pm 2}{0} \therefore 0=3^{\text {rd }} \text { R. Ans. } y^{3}-5 y-4=0 \text {. }
\end{aligned}
$$

(3) Here $\mathrm{A}=-6, n=3, \therefore r=2$; hence $x=y+2$, or $y=x-2$.

$$
\begin{aligned}
& 1-6 \quad \pm 0 \quad+5 \quad(+2 \text {, since the diviscr is } x-3 \\
& \frac{+2}{-4} \quad \frac{-8}{-8} \quad \frac{-16}{-11} \therefore-11=1^{s t} \text { R. } \\
& \frac{+2}{-2} \quad \frac{-4}{-12} \ldots-12=2^{n d} R \text {. } \\
& \frac{+2}{0} \cdot \therefore 0=3^{\text {rd }} \text { R. Ans. } y^{3}-12 y-11=0 \text {. }
\end{aligned}
$$

(10) Here $\mathrm{A}=-6, n=3, \therefore r=2$;
hence $x=y+2$, or $y=x-2$.

$$
\begin{array}{llll}
1 & \begin{array}{ll}
-6 & +12 \\
+2 & \frac{-8}{-4} \\
\frac{+8}{-4} & \frac{+8}{+27} \therefore+27=1^{n} \mathrm{R} . \\
\frac{+2}{-2} & \frac{-4}{0} \\
& \therefore 0=2^{n d} \mathrm{R} . \\
\frac{+2}{0} & \therefore 0=3^{r d} \text { R. Ance the divisor is } x-2 \\
& \text { Ans. } y^{3}+27=0 .
\end{array}
\end{array}
$$

(11) Dividing each term by 3 , the given equation becomes $x^{3}+5 x^{2}+{ }^{25} x-1=0$.
Here $\Lambda=5, n=3, \therefore r=-\frac{5}{3}$;
hence $x=y-\frac{5}{3}$, or $y=x+\frac{5}{3}$.
$1+5+\frac{25}{3} \quad-1 \quad\left(-\frac{5}{3}\right.$, since the divisor is $x+\frac{8}{3}$.
$\frac{-\frac{5}{3}}{+\frac{10}{3}} \frac{-\frac{50}{9}}{+^{25}} \frac{-\frac{125}{9}}{-\frac{152}{27}} \cdot \therefore-\frac{152}{2}{ }^{2}=14$ R.
$\frac{-\frac{5}{3}}{+\frac{5}{3}} \frac{+\frac{25}{9}}{0} \therefore 0=2^{\text {nd }} R$.
$\frac{-\frac{5}{3}}{0} . \therefore 0=3^{\text {rd }}$ R. Ans. y
ere $A=-6, B=+9, n=3$,

$$
\frac{1}{2} n(n-1) r^{2}+(n-1) A r+B=3,3(2) r^{2}+(2) \times-6 r+9=0,
$$

or, $r^{2}-4 r+3=0$, whence $r=3$, or 1 .
hence $x=y+3$, or $y+1$, and $y=x-3$, or $x-1$.
or, $1-6 \quad+9 \quad-20 \quad(+1$, since the divisor is $x-$.

$$
\frac{ \pm 1}{-5} \quad \frac{-5}{+4} \quad \frac{ \pm 4}{-16}
$$

$$
\frac{+1}{-4} \quad \frac{-4}{0}
$$

$$
\frac{+1}{-3}
$$

$$
\text { Ans. } y^{3}-3 y^{2}-16=0
$$

(12) Here $\mathrm{A}=-4, \mathrm{~B}=5, n=3$.
$\frac{1}{2} n(n-1) r^{2}+(n-1) \mathrm{A} r+\mathrm{B}=3 r^{2}-8 r+5=0$, and $r=\frac{3}{3}$ or 1 hence $x=y+\frac{5}{3}$, or $y+1$, and $y=x-\frac{5}{3}$, or $x-1$.

EQUAL ROOTS.

Article 414.

(2) Here $x^{3}-2 x^{2}-15 x+36=0$,
$3 x^{2}-4 x-15=1^{\text {st }}$ derived polynomial, and the greatest common divisor of this and the given equation (4 rt. 108, is $x-3$; hence $x-3=0$, and $x==+3$, therefore +3 and fi are two roots of the given equation.

$$
\begin{aligned}
& 1-4+5-2 \text { (}+5 \frac{5}{3} \text {, since the divisor is } x-\frac{5}{3} \text {. } \\
& \begin{array}{llllllll}
+\frac{5}{3} & -\frac{35}{9} & +\frac{5}{9} 9 \\
-\frac{7}{3} & \text { + } 10 & \text { or } 1 & -4 & +5 & -2 & (+1, \\
+\frac{5}{3} & -\frac{10}{9} & & & +1 & +3 & +2 & \\
& & & -3 & +2 & 0
\end{array} \\
& \begin{array}{l}
-\frac{2}{3} \\
+\frac{5}{3} \\
+1
\end{array} \\
& \frac{+1}{-2} \frac{+2}{0} \\
& \frac{+1}{-1} \\
& \text { Ans. } y^{3}-y^{2}=0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 1-6 \quad-9 \quad-20 \quad(+3 \text {, since the divisor is } x-3 \text {. } \\
& +3-0+0 \\
& -3-0 \quad-20 \\
& \frac{+3}{0} \quad \frac{0}{0} \\
& +3 \\
& \overline{+3} \text { Ans. } y^{3}+3 y^{2}-20=0 \text {. }
\end{aligned}
$$

Dividing the given equation by $(x-3)(x-3)$ the quotiont is $x+4$, hence $x+4=0$, and $x=-4$.
(3) Here $x^{4}-9 x^{2}+4 x+12=0$,
$4 x^{3}-18 x+4=1^{t t}$ derived polynomial, and the greatest common divisor of this and the given equation is $x-2$; hence $x=+2$, and +2 . Dividing the given equation by $(x-2)(x-2)$ the quotient is $x^{2}+4 x-3$; hence $x^{2}+4 x-3$ $=$: from which we find $x=-1$, and -3 .
(4) Here $x^{4}-6 x^{3}+12 x^{2}-10 x+3=0$,
$4 x^{3}-18 x^{2}+24 x-10=1^{v t}$ derived polynomial, and the greatest common divisor of this and the given equation is $x^{2}-2 x+1$; but $x^{2}-2 x+1=(x-1)^{2}$, therefore the given equation has three roots, each equal to 1 .
Dividing the given equation by $(x-1)(x-1)(x-1)$ the quotient $s x-3$, hence $x-3=0$, and $x=3$.
The operation of dividing by $x-1$ should be performed by spnthetic division on account of its brevity, thes,

$$
\begin{array}{lllll}
1 \begin{array}{lll}
-6 & +12 & -10 \\
\frac{+1}{2} & \frac{-5}{+7} & \frac{+7}{-3}
\end{array} & \frac{-3}{0} \\
& \frac{+1}{-5} & +1 \\
\frac{+1}{-4} & \frac{-4}{+3} & \frac{+3}{0} & \\
\frac{+1}{-3} & \frac{-3}{0} & & \text { Quotient }=x-3 .
\end{array}
$$

(5) Here $x^{4}-7 x^{3}+3 x^{2}+27 x-54=0$,
$4 x^{3}-21 x^{2}+18 x+27=$ the first derived polynomial, and the greatest common divisor of this and the given equation is $x^{2}-6 x+9$; but $x^{2}-6 x+9=(x-3)^{2}$, therefore the equation has three roots, each equal to 3 .
Dividing the given equation by $(x-3)(x-3)(x-3)$, the quotient is $x+2$, hence $x+2=0$, and $x=-2$.
(6) Here $x^{4}+2 x^{3}-3 x^{2}-4 x+4=0$,
$4 x^{3}+6 x^{3}-6 x-4=1^{\text {a }}$ derived polynomial, and the greatest common divisor of this and the given equation is $x^{2}+x-2=(x+2)(x--1)$; therefore the equation contains two factors of the form $x+2$, and of the form $x-1$, hence the four roots are $-2,-2,+1,+1$.

If the learner does not readily see that $x^{2}+8-2=(x+2)(x-1)$, et him place it equal to zero and find the roots.
(7) Here $x^{4}-12 x^{3}+50 x^{2}-8 \mathbf{4} x+49=0$,
$4 x^{3}-36 x^{2}+100 x-84=1^{\text {st }}$ derived polynomial, and the greatest common divisor of this and the given equation is $x^{2}-6 x+7$.
Placing this equal to zero, we find its roots are $3+\sqrt{2}$, and $3-\sqrt{2}$, that is, $x^{2}-6 x+7=(x-3-\sqrt{2})(x-3+\sqrt{2})$, hence the four binomial factors of the given equation are $(x-3-\sqrt{2})(x-3-\sqrt{2})(x-3+\sqrt{2})(x-3+\sqrt{2})$, and the four roots ure $3+\sqrt{2}, 3+\sqrt{2}, 3-\sqrt{2}, 3-\sqrt{2}$.
(8) Here $x^{5}-2 x^{4}+3 x^{3}-7 x^{2}+8 x-3=0$,
$5 x^{4}-8 x^{3}+9 x^{2}-14 x+8=1^{t t}$ derived polynnivial, and the greatest common divisor of this and the given equation is $x^{2}-2 x+1=(x-1)^{2}$, therefore the equation has three roots, each equal to +1 .
Dividing the given equation by $(x-1)(x-1)(x-1)$ the quotient is $x^{2}+x+3$, thus,

1	-2	+3	-7	+8	-3	$\underline{+1}$
	$\frac{+1}{-1}$	$\frac{-1}{+2}$	$\frac{+2}{-5}$	$\frac{-5}{+3}$	$\frac{+3}{0=1^{s}} \mathbf{R}$.	
	$\frac{+1}{0}$	$\frac{+0}{+2}$	$\frac{+2}{-3}$	$\frac{-3}{0=2^{\text {nd }}} \mathbf{R}$.		
	$\frac{+1}{+1}$	$\frac{+1}{+3}$	$\frac{+3}{0=}$			

$\therefore x^{2}+x+3=0$, from which $x=-\frac{1}{2} \pm \frac{1}{2} \sqrt{-11}$.
As learners sometimes experience difficulty in finding the greatest common divisor in this example, we will here give the operation.

Multiplying the given equation by 5 , the operation is a follows:

$$
\begin{array}{ll}
5 x^{5}-10 x^{4}+15 x^{3}-35 x^{2}+40 x-15 & \underline{ } 5 x^{4}-8 x^{3}+9 x^{2}-14 x+8 \\
\frac{5 x^{5}-8 x^{4}+9 x^{3}-14 x^{2}+8 x}{-2 x^{4}+6 x^{3}-21 x^{2}+32 x-15} & \underline{\mid x-2} \\
-10 x^{4}+30 x^{3}-105 x^{2}+160 x-75 & \text { Multiply the first } \\
-10 x^{4}+16 x^{3}-18 x^{2}+28 x-16 & \text { divisor bv } 14 .
\end{array}
$$

$$
\begin{aligned}
& 70 x^{4}-112 x^{3}+126 x^{2}-196 x+112 \quad \frac{14 x^{3}-87 x^{2}+132 x-59}{70 x^{4}-435 x^{3}+660 x^{2}-295 x} \\
& +323 x^{3}-531 i^{2}+99 x+112 \\
& \times \text { by 14, } 4522 x^{3}-7476 x^{2}+1386 x+1568 \\
& \frac{4522 x^{3}-28101 x^{2}+42636 x-19057}{20625 x^{2}-41250 x+20625} \\
& \text { or, } 20625\left(x^{2}-2 x+1\right)
\end{aligned}
$$

$x^{2}-2 x+1$ will be found to divide $14 x^{3}-87 x^{2}+132 x-59$, and it is therefore the greatest common divisor required.
(9) Here $x^{6}+3 x^{5}-6 x^{4}-6 x^{3}+9 x^{2}+3 x-4=0$.
$6 x^{5}+15 x^{4}-24 x^{3}-18 x^{2}+18 x+3=1^{s t}$ derived polynomial, $30 x^{4}+60 x^{3}-72 x^{2}-36 x+18=2^{\text {nd }}$ derived polynomial.
We find the greatest common divisor of the given equation and the first derived polynomial is $x^{3}-x^{2}-x+1$; if we put this equal to zero, it is easily seen that $x=1$, then dividing by $x-1$, the quotient is $x^{2}-1$, of which the factors are $x+1$ and $x-1$, hence $x^{3}-x^{2}-x+1=(x-1)(x-1)(x+1)=(x-1)^{2}(x+1)$, therefore the given equation contains $x-1$ as a factor three times, and $x+1$ as a factor twice; hence three roots of the equation are $+1,+1$, +1 , and two roots -1, -1.

Dividing the given equation by $(x-1)^{3}(x+1)^{2}$, the quotient is $x+4$; hence $x+4=0$, and $x=-4$.

Otherwise thus :
After finding the greatest common divisor of the given equation, and its first derived polynomial, we may proceed to find the greatest common divisor of the $1^{\text {st }}$ and $2^{\text {nd }}$ derived polynomials, which is $x-1$; hence, since the $2^{n d}$ derived polynomial contains $x-1$ as a facior once, the $1^{s t}$ derived polynomial must contain it as a factor twice, and the given equation three times.

Also, by dividing $\dot{x}^{3}-x^{2}-x+1$ by $(x-1)^{2}$, the quotient is $x+1$, which is therefore contained twice as a factor in the given equaticn. The operation of finding the greatest common divisor of the $1^{s t}$ and $2^{n d}$ derived polynomials is quite terlious, but it enables us to determine that $x-1$ is a factor of $x^{3}-x^{2}-x+1$ without solving an equation of the third degree, the method of doing - hich has not yet been explained.

THEOREMOFSTURM.

Articles $420-427$.

(3) Here $\mathrm{X}=x^{3}-2 x^{2}-x+2$, and (Art. 111)

$$
X_{1}=3 x^{2}-4 x-1 .
$$

Muitiplying X by 3 , to render the first tetm divisible by the first term of X_{1}, and proceeding according to Art. 108, we have for a remainder $-14 x+16$. Canceling the factor +2 , and changing the signs (Art. 420), we have $\mathrm{X}_{2}=+7 x-8$. Multiplying X_{1} by 7 to render the first term divisible by the first term of X_{2}, and proceeding as before, the remainder is -81; hence $X^{3}=+81$, and the series of functions is

$$
\begin{aligned}
& \mathrm{X}=x^{3}-2 x^{2}-x+2 \\
& \mathrm{X}_{1}=3 x^{2}-4 x-1 \\
& \mathrm{X}_{2}=7 x-8 \\
& \mathrm{X}_{3}=+81
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{X}, & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3}
\end{array}
$$

For $x=-\infty$ the signs are $-+\quad+, 3$ var. $\therefore k=3$
$x=+\infty$ the signs are $++\quad+\quad+.0$ yar. $. . \mathrm{k}^{\prime}=0$.
$\therefore \mathrm{k}-\mathrm{k}^{\prime}=2-1=1$, the number of real roots.
By substituting the whole numbers from -2 to +3 , we find the roots are $-1,+1$, and +2 .
(4) Here $X=8 x^{3}-36 x^{2}+46 x-15$, and (Art. 411),

$$
X_{1}=24 x^{2}-72 x+46, \text { (or } 12 x^{2}-36 x+23 \text {). }
$$

Mnltiplying X by 3 , and dividing by X_{1}, the first remainder is $-36 x^{2}+92 x-45$; multiplying this by 2 , and continuing the division, the remainder is $-32 x+48=16(-2 x+3)$, hence X_{2} $=2 x-3$. Dividing X_{1} by X_{2} the remainder is -8 , hence $X_{3}=$ +8 , and the series of functions is

$$
\begin{aligned}
& X=8 x^{3}-36 x^{2}+46 x-15 \\
& X_{1}=24 x^{2}-72 x-46 \\
& X_{2}=2 x-3 \\
& X_{3}=+8 .
\end{aligned}
$$

For $x=-\infty$ the signs are -+ - +3 var. $\therefore \mathbf{k}=3$,
$x=+\infty$ the signs are,++++ 0 var. $\therefore \mathrm{k}^{\prime}=0$
$\therefore \mathrm{k}-\mathrm{k}^{\prime}=3-0=3$, the number of real roots.

By substituting the whole numbers, from 0 to 3 , we find that one variation is lost in passing from 0 to 1 , one from 1 to 2 , and one from 2 to 3.
(5) Here $\mathrm{X}=x^{3}-3 x^{2}-4 x+11$, and (Art. 411),

$$
X_{1}=3 x^{2}-6 x-4
$$

Multiplying \mathbf{X} by 3 , and dividing by \mathbf{X}_{1}, the remainder is -14x+29, hence $X_{2}=14 x-29$. Multiplying X_{1} by 14 , and dividing by \mathbf{X}_{2}, the first remainder is $-13 x-56$, multiplying this by 14 , and continuing the division, the remainder is -697 , hence $\Sigma_{3}=+697$, and the series of functions is

$$
\begin{aligned}
& \mathbf{X}=x^{3}-3 x^{2}-4 x+11 \\
& \mathbf{X}_{1}=3 x^{2}-6 x-4 \\
& \mathbf{X}_{2}=14 x-29 \\
& X_{3}=+697
\end{aligned}
$$

For $x=-\infty$ the signs are,-+-+ 3 var. $\therefore \mathrm{k}=3$,
$x=+\infty$ the signs are $+十+1,0$ var. $\therefore \mathrm{k}^{\prime}=0$.
$\therefore \mathrm{k}-\mathrm{k}^{\prime}=3-0=3$, the number of real roots.
By substituting the whole numbers from -2 to +4 , we find tl at one variation is lost in passing from -2 to -1 , one from +1 , to +2 , and one from +3 to +4 .
(6) Here $\mathrm{X}=x^{3}-2 x-5$, and $\mathrm{X}_{1}=3 x^{2}-2$.

Multiplying X by 3 , and dividing by X_{1}, the remainder is $-4 x-15$, hence $\mathbf{X}_{2}=4 x+15$. Multiplying X_{1} by 4 , and dividing by X_{2}, the first remainder is $-45 x-8$; multiplying this by 4 , and continuing the division, the remainder is +643 , heace $\mathrm{r}_{3}=-643$, and the series of functions is

$$
\begin{aligned}
& X=x^{3}-2 x-5 \\
& X_{1}=3 x^{2}-2 \\
& X_{2}=4 x+15 \\
& X_{3}=-643
\end{aligned}
$$

For $x=-\infty$ the signs are,-+-- 2 var. $\therefore \mathrm{k}=2$,
$x=+\infty$ the signs are $十+1-1$ var. $\therefore \mathrm{k}^{\prime}=1$.
$\therefore \mathrm{k}-\mathrm{k}^{\prime}=2-\mathrm{l}=1$, the number of real roots.
We also find that one variation is lost in passing from 2 20 3 therefore the root lies between 2 and 3 .
(7) Here $\mathrm{X}=x^{3}-15 x-22$, and $\mathrm{X}_{1}=3 x^{2}-15$, or $x^{2}-5$. .

Dividing X by $\mathrm{X}_{1}=x^{2}-5$, the remainder is $-10 x-22=2$ $(-5 x-11)$, hence $X_{2}=+5 x+11$. Multiplying X_{1} by 5 , and dividing by \mathbf{X}_{2}, the first remainder is - $11 x-25$; multiplying this by 5 , and continuing the division, the remainder is $-\mathbf{4}$, tence $\mathrm{X}_{3}=+4$, and the series of functions is

$$
\begin{aligned}
& \mathrm{X}=x^{3}-15 x-22 \\
& \mathrm{X}_{1}=x^{2}-5 \\
& \mathrm{X}_{2}=5 x+11 \\
& \mathrm{X}_{3}=+4
\end{aligned}
$$

For $x=-\infty$ the signs are $-+\cdots+3$ var. $. . k=3$, $x=+\infty$ the signs are,++++ 0 var. $. . \mathrm{k}^{\prime}=0$.
$\therefore k-k^{\prime}=3-0=3$, the number of real roots.
By substituting the whole numbers from -3 to +5 , we find that two variations are lost from -3 to -2, and one from +4 to +5 ; we also find that -2 is a root. For $x=-2 \frac{1}{2}$ there are three variations, and for $x=-2 \frac{1}{4}$ there are two variations, hence one root lies between $-2 \frac{1}{4}$ and $-2 \frac{1}{2}$.
(8) Here $\mathrm{X}=x^{4}+x^{3}-x^{2}-2 x+4$, and (Art. 411),

$$
\mathrm{X}_{1}=4 x^{3}+3 x^{3}-2 x-2 .
$$

Multiplying X by 4 , and dividing by X_{1}, the first remainder is $x^{3}-2 x^{2}-6 x+16$, multiplying this by 4 , and continuing the division, the remainder is $-11 x^{2}-22 x+66=11\left(-x^{2}-2 x+6\right)$, hence $X_{2}=x^{2}+2 x-6$. Dividing X_{1} by X_{2} the remainder is $+32 x$ $-32=32(x-1)$, hence $X_{3}=-x+1$. Dividing X_{2} by X_{3}, the remainder is -3 , hence $X_{4}=+3$, therefore the series of funcLien is

$$
\begin{aligned}
& \mathrm{X}=x^{4}+x^{3}-x^{2}-2 x+4 \\
& \mathbf{X}_{1}=4 x^{3}+3 x^{2}-2 x-2 \\
& \mathbf{X}_{2}=x^{2}+2 x-6 \\
& \mathbf{X}_{3}=-x+1 \\
& \mathbf{X}_{4}=+3 .
\end{aligned}
$$

For $x=-\infty$ the signs are $+一+十+, 2$ var. $\therefore k=2$. $x=+\infty$ the signs are,+++-+ 2 var. $\therefore \mathrm{k}^{\prime}=2$.
$\therefore \mathrm{k}-\mathrm{k}^{\prime}=2-2=0$; hence there are no real roots.
(9) Here $\mathrm{X}=x^{4}-4 x^{3}-3 x+23$, and $\mathrm{X}_{1}=4 x^{3}-12 x^{2}-3$.

Multiplying X by 4 , and dividing by X_{1}, the remainder is
$-12 x^{2}-9 x+89$, hence $\mathrm{X}_{2}=+12 x^{2}+9 x-89$. Multiplying X_{1} by 3 , and dividing by X_{2}, the first remainder is $-45 x^{2}+89 x-y_{1}$ multiplying this by 4 , and continuing the division, the remainder is $+491 x-1371$, hence $\mathrm{X}_{3}=-491 x+1371$. Multiplying X_{2} by 491, and dividing by X_{3}, the first remainder is 20871×-43699, multiplying this by 493, and continuing the division, the remainder is +7157932, hence $\mathrm{X}_{4}=-7157932$, and the series of functions is

$$
\begin{aligned}
& \mathrm{X}=x^{4}-4 x^{3}-3 x+23 \\
& \mathrm{X}_{1}=4 x^{3}-12 x^{2}-3 \\
& \mathbf{X}_{2}=12 x^{2}+9 x-89 \\
& \mathrm{X}_{3}=-491 x+1371 \\
& \mathrm{X}_{4}=-7157932 .
\end{aligned}
$$

For $x=-\infty$ the signs are + + + + , 3 var. $\therefore \mathrm{k}=3$, $x=+\infty$ the signs are +++- , 1 var. $\therefore \mathrm{k}^{\prime}=1$. $\therefore \mathrm{k}-\mathrm{k}^{\prime}=3-1=2$, the number of real roots.
By substituting the whole numbers from 1 to 4 , we find that one variation is lost in passing from 2 to 3 , and one from 3 to 4 .
(10) Here $X=x^{4}-2 x^{3}-7 x^{2}+10 x+10$, and $\mathrm{X}_{1}=4 x^{3}-6 x^{2}$

$$
-14 x+10, \text { or } 2 x^{3}-3 x^{2}-7 x+5
$$

Multiplying \mathbf{X} by 2 , and dividing by X_{1}, the first remainder is $-x^{3}-7 x^{2}+15 x+20$, multiplying this by 2 , and continuing the division, the remainder is $-17 x^{2}+23 x+45$, hence $X_{2}=17 x^{2}$ -23x-45. Multiplying X_{1} by 17, and dividing by X_{2}, the first remainder is $-5 x^{2}-29 x+85$; multiplying this by 17 , and continuing the division, the remainder is $-608 x+1220=4$ $(-152 x+305)$, hence $X_{3}=152 x-305$. Multiplying X_{2} by 152, and dividing by X_{8}, the first remainder is $1689 x-6840$, multiplying this by 152 , and continuing the division, the remainder is -524535 , hence $\mathrm{X}_{4}=+524535$, and the series of functions is

$$
\begin{aligned}
& \mathrm{X}=x^{4}-2 x^{3}-7 x^{2}+10 x+10 \\
& X_{1}=2 x^{3}-3 x^{2}-7 x+5 \\
& \mathrm{X}_{2}=17 x^{2}-23 x-45 \\
& X_{3}=152 x-305 \\
& X_{4}=+524535 .
\end{aligned}
$$

For $x=-\infty$ the signs are $+-+\cdots+4$ var. $\therefore k=4$, $x=+\infty$ the signs are,+++++ 0 var. $\therefore \mathrm{k}^{\prime}=0$.
$\therefore k-k^{\prime}=4-0=4$, the number of real roots.
We also find that one variation is lost in passing from - 3 to -2 , one in passing from -1 to 0 , and two in passing from +2 to +3 .
(11) Here $\mathrm{X}=x^{5}-10 x^{3}+6 x-1$, and $\mathrm{X}_{1}=5 x^{4}-30 x^{2}-+6$.

Multiplying X by 5 , and dividing by X_{1}, the remainder is $-20 x^{3}+24 x+5$, hence $X_{2}=20 x^{3}-24 x-5$. Multiplying X_{1} by 4 , and dividing by X_{2}, the remainder is $-96 x^{2}+5 x+24$, hence $\mathrm{X}_{3}=96 x^{2}-5 x-24$. Multiplying X_{2} by 24 , and dividing by X_{3}, the first remainder is $25 x^{2}-456 x-120$; multiplying this by 96 , and continuing the division, the remainder is -43651x-10920, hence $X_{4}=43651 x+10920$. Multiplying X_{3} by 4365 I , and diriding by X_{4}, the first remainder is - 1266575 - 1047624 ; mu:tiplying this by 43651, and continuing the division, the remainder $\therefore-1372624203024$, hence $X_{5}=+1372624203024$. It is nut aecessary, however, to obtain any thing more than the sign of the $\mathrm{l}_{\text {ast }}$ function.

The series of functions is

$$
\begin{aligned}
& \mathrm{X}=x^{5}-10 x^{3}+6 x+1 \\
& \mathbf{X}_{1}=5 x^{4}-30 x^{2}+6 \\
& \mathbf{X}_{2}=20 x^{3}-24 x-5 \\
& \mathbf{X}_{3}=96 x^{2}-5 x-24 \\
& \mathbf{X}_{4}=43651 x+10920 \\
& \mathbf{X}_{5}=+.
\end{aligned}
$$

For $x=-\infty$ the signs are $-+一+一+5$ var. $\therefore \mathrm{k}=5$,
" $x=+\infty$ the signs are,++++++ 0 var. $\therefore \mathrm{k}^{\prime}=0$. $\therefore \mathrm{k}-\mathrm{k}^{\prime}=5-0=5$, the number of real roots.
By substituting the whole numbers from -4 to +4 , we find that one variation is lost in passing from -4 to -3 , two in passing from -1 to 0 , one in passing from 0 to 1 , and one in passing from 3 to 4.

RESOIUTION OF NUMERICAL EQUATIONS.

RATIONALROTS.

Article 429.

'2) Here $x^{3}-7 x^{2}+36=0 .+1$ and -1 are not roots.
Limit of positive roots $=1+7=8$. .
Changing the signs of the alternate terms (.Art. 418), the equation becomes $x^{3}+7 x^{2} \pm 0 x-35=0$.
\therefore limit of negative ronts $=-(1+\sqrt[3]{36})$, or -5 .
Last term
$+36$
Divisors . . . $+6,+4,+3,+2,-2,-3,-4$
Quotients . . $+6,+9,+12,+18,-18,-12,-9$
Add $0 \ldots . .+6,+9,+12,+18,-18,-12,-9$
Quotients . . +1, * + 4, $+9,+9,+4, *$
Add - $-7 . .-6, \quad-3,+2,+2,-3$.
Quotients . . -1, $\quad-1,+1,-1,+1$
Add +1 . . $0, \quad 0, \div 2, \quad 0,+2$.
Hence the ronts are $+6,+3$, and -2.
(3) Here $x^{3}-6 x^{2}+11 x-6=0$, and +1 is found to be a ioot Limit of positive roots $=1+6=7$.
Limit of negative rooss $=0$, since when the signs of the alternate terms are changed, all the terms are positive, therefore, this equation has no positive root, and therefore the given equation has no negative root (Art. 402).

Last term -6.

Hence the roots are $+3,+2$, and 1 .
(4) Here $x^{3}+x^{2}-4 x-4=0$, and -1 is found to be a root.

Limit of positive roots $1-\sqrt{4}=3$.
Limit of negative roots $-(1+4)=-5$.
Last term

$$
-4
$$

Divisors +2, -2, -4 Therefore the root
Quotients -2, $+2,+1$ are $+2,-2,-1$.
Add -4 - n, -2, -3
Quotients $-3,+1$, *
Add +1 $-2,+2$
Quotients $-1,-1$
Add +1 0 , 0.
(5) Here $x^{3}-3 x^{2}-45 x-72=0$, and +1 and -1 are not roots.
Limit of positive roots 72 , of negative roots $-(1+\sqrt{46)}$, or -8.
Last term
-72
Divisors,
$+72,+36,+24,+18,+12,+9,+8,+6,+4,+3,+9$ $-2,-3,-4,-6,-8$.

Quotients,
$-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36$, $+36,+24,+18,+12,+9$.

Add -46,
$-47,-48,-49,-50,-52,-54,-55,-58,-64,-70,-82$, $-10,-22,-28,-34,-37$.

Quotients,

\therefore the roots are $-2,-4,+9$.
(6) Here $x^{3}-5 x^{2}-18 x+72=0$, and +1 and -1 are not oots Limit of pusitive roots $1+18=19$, of negative roots -72 Last term $\quad+72$.
Divisors,
$+18,+12,+9,+8,+6,+4,+3,+2,-2,-3$,
$4,-6,-8,-9,-12,-18,-24,-36,-72$.
Quotients,
$+4,+6,+8,+9,+12,+18,+24,+36,-36,-24$, $-18,-12,-9,-8,-6,-4,-3,-2,-1$.

Add -18,
$-14,-12,-10,-9,-6, \quad 0,+6,+18,-54,-42$,
$-36,-30,-27,-26,-24,-22,-21,-20,-19$.
Quotients,
*, - 1, *, \quad, $-1, \quad 0,+2,+9,+27,+14$,
$+9,+5, \quad *, \quad *,+2, \quad *, \quad *, \quad *, \quad$..
Add - 5,
$*,-6, \quad{ }^{*} \quad *,-6,-5,-3,+4,+22,+9$, +4, $0, \quad *, \quad *,-3$.

Quotients,
$\begin{array}{rrrr}* & *, & *, & { }^{*},-1, \\ -1, & *,-1,+2,-11,-3, \\ \text { Add }+1, & *, & \\ 0,+1, & 0, & 0,+3,-10,-2,\end{array}$ $\therefore+6,+3$, and -4 are the roots.
(7) Here $x^{4}-10 x^{3}+35 x^{2}-50 x+24=0$, and +1 , is found tc be one of the roots (Art. 429, Cor. I).
The limit of the fositive roots is 24 , and since when we change the signs of the alternate terms, all the terms are positive, this equation has no positive roots, (Art. 402, Cor. 1), therefore the given equation has no negative roots.

Last term $\quad+24$.
Divisors. . . . $+24,+12,+8,+6,+4,+3,+2$.
Quotients . . . $+1,+2,+3,+4,+6,+8,+12$.
Add -50 . . . -49, -48, -47, -46, -44, -42, -38.
Quotients . . . *, - 4, *, \quad, —11, -14, -19.
Add +35 $-31, \quad+24,+21,+16$.
Quotients *, $\quad+6,+7,+8$.
Λ dd -10 - 4, - 3, -2 .
Quotients - 1, - 1, - 1 .
Add +1 0, 0, 0.
$\therefore+4,+3,+2$, and +1 , are the roots.
(8) Here $x^{4}+4 x^{3}-x^{2}-16 x-12=0$, and -1 is found to be root.
Limit of positive roots $1+\sqrt{16}=5$; of negative roots $-(1+4)=-5$.
Last term - 12 .

$\cdots+2,-2,-3$, and -1 , are the roots.
(9) Here $x^{1}-4 x^{3}-19 x^{2}+46 x+120=0$, and +1 and -1 are found not to be routs.

Limit of the positive roots $1+19=20$; of the negative roots $-(1+\sqrt{46})$, or -8 .
Last term
+120 .
Diviscss $+20,+15,+12,+10,+8,+6,+5,+4,+3$, - $2,-2,-3,-4,-5,-6,-8$.

Quotients, $+6,+8,+10,+12,+15,+20,+24,+30,+40$, $+60,-60,-40,-30,-24,-20,-15$.
Add $+46,+52,+54,+56,+58,+61,+66,+70,+76,+86$ $+106,-14,+6,+16,+22,+26,+31$.
Quotients, $\quad *, \quad *, \quad *, \quad *, \quad *,+11,+14,+19$, $+53,+7,-2,-4, \quad *, \quad *, \quad *$
Add - 19. $-8,-5,0$,
$+34,-12,-21,-23$.
Quotients. *, - 1, 0,
$+17,+6,+7, *$
Add -4 - 5, - 4,

$$
-13,+2,+3
$$

Quotients
*, - 1,-1.

Add +1 $0, \quad 0$,
$0, \quad 0$.
$\therefore+5,+4,-2$, and -3 are the roots.
(10) Here $x^{4}+0 x^{3}-27 x^{2}+14 x+120=0$, and +1 and -1 are not roots.

Limit of positive roots $1+\sqrt{27}$ or 7 ; of negative roots — (1+27) or 28.
Last term
+120 .
Divisors, $+6,+5,+4,+3,+2,-2,-3,-4,-5$,

$$
-6,-8,-10,-12,-15,-20,-24
$$

Quotients, $+20,+24,+30,+40,+60,-60,-40,-30,-24$,

$$
-20,-15,-12,-10,-8,-6,-5
$$

Add $+14,+34,+38,+44,+54,+74,-46,-26,-16,-10$,

$$
-6,-1,+2,+4,+6,+8,+9
$$

Quntiente $\quad *, \quad *,+11,+18,+37,+23, \quad *,+4,+2$, $+1, \quad * \quad *, \quad *, \quad *, \quad *$ *.
Add -27. $-16,-9,+10,-4, \quad-23,-25$, -26.
Quotien $-4,-3,+5,+2, \quad *,+5$,
Add 0 $-4,-3,+5,+2, \quad+5$.
Quotients - 1, $1, \quad *,-1, \quad-1$.
Add +1
$0, \quad 0, \quad 0$,
0.
\therefore the roots are $+4,+3,-2$, and -5 .
(11) Here $x^{4}+x^{3}-29 x^{2}-9 x+180=0$, and +1 , and -1 are not roots.
Limit of pasitive roots, $1+\sqrt{29}$, or 7 ; of negative roots, $-(1+29)=-30$.
Last term
$+180$.
Divisors, $\quad+6,+5,+4,+3,+2,-2,-3,-4,-5$

$$
-6,-9,-10,-12,-15,-18,-20,-30 .
$$

Quotients, $+30,+36,+45,+60,+90,-90,-60,-45,-36$,

$$
-30,-20,-18,-15,-12,-10,-9,-6 .
$$

Add -9, $\quad+21,+27,+36,+51,+81,-99,-69,-54,-45$, -39, -29, -27, - $24,-21,-19,-18,-15$.
Quotients, *, *, $+9,+17, \quad *, \quad *,+23, \quad *,+9$, *, *, *. $+2, \quad$ *, *, *, *.
Add -29 -20, - 12, - 6, -20.

.. the roots are $+4,+3,-3$, and -5 .
(12) Here $x^{3}-2 x^{2}-4 x+8=0$, and +1 and -1 are not roots. Limit of positive roots, $1+\sqrt{4}=3$; of negative ronts $-(1+4)=-5$.
Last term $+8$.
Divisors. $+2,-2,-4$.
Quotients $+4,-4,-2$.

$$
\begin{array}{llllll}
\text { Add -4. } & . & . & . & 0,-8,-\ell . \\
\text { Quotients } & . & . & . & . & 0,+4 . \\
\text { Add }-2 & . & . & . & . & -2,+2 . \\
\text { Quotients } & . & . & . & . & -1,-1 . \\
\text { Add }+1 . & . & . & . & . & 0, \quad 0 .
\end{array}
$$

$\therefore+2$ and -2 are roots, and by dividing the !rven equa. tion by $(x-2)(x+2)$, the quotient is $x-2$, hence $x-2=0$, and $x=+2, . \therefore$ the equation has two equal roots, each of which is +2 .
(13) Here $x^{3}+3 x^{2}-8 x+10=0$, an +1 , and -1 a a^{-}not roots. Limit of positive roots, $1+\sqrt{8}$, or 4 ; of negative roots $-(1+8)=-9$.
Last term +10.

$$
\begin{aligned}
& \text { Divisors. }+2,-2,-5 \text {. } \\
& \text { Quotients }+5,-5,-2 \text {. } \\
& \text { Add -8. -3, }-13,-10 \text {. } \\
& \text { Quotients *, *, 十 } 2 \text {. } \\
& \text { Add +3. }+5 \text {. } \\
& \text { Quotient - } 1 . \\
& \text { Add +1. } \\
& 0 .
\end{aligned}
$$

.. - 5 is a root, and dividing the given equation bv x -$(-5)=x+5$ the quotient is $x^{2}-2 x+2$, hence $x^{2}-2 x+2$ $=0$, and $x=1 \pm \sqrt{-1}$.
(14) Here $x^{4}-9 x^{3}+17 x^{2}+27 x-60=0$, and +1 , and -1 are not roots.
Limit of positive roots, $1+9=10$; of negative roots, $-(1+\sqrt[3]{27})$, or -4 .
Last term
-60.
Divisors, $\quad+10,+5,+4,+3,+2,-2,-3,-4$.
Quotients, $-6,-12,-15,-20,-30,+30,+20,+15$.
Add $+27,+21,+15,+12,+7,-3,+57,+47,+42$.
Quotients, *, +3, + 3, *, *, *, *, *.
Add $+17 \cdots+20,+20$.
Quotients . . . $+4,+5$.
Add -9. . . - 5, - 4 .
Quotients . $-1,-1$.
Add +1 . . . 0 , 0.
$\ldots+5$, and -4 are roots, and by dividing the given equas tion by $(x-5)(x-4)$, the quotient is $x^{2}-3$, hence $x^{2}=3$, and $x= \pm \sqrt{3}, \therefore$ the four roots are $+5,+4,+\sqrt{3}$ $-\sqrt{3}$.
(15: Here $2 x^{3}-3 x^{2}+2 x-3=0$.
Let $x=\frac{y}{2}$, then the transformed equation (Art. 405, Cor.)
is $y^{3}-3 y^{2}+4 y-12=0$, and +1 , and -1 are not roots.
Limit of positive roots, $1+3=4$, and since when the signs of the aternate terms are changed (Art. 400) all the terms are positive, merefure the given equation has no negative roots.

Last term

- 12 .

$$
\begin{aligned}
& \text { Divisors }+4,+3,+2 . \\
& \text { Quotients }-3,-4,-6 . \\
& \text { Add +4 }+1,0,-2 . \\
& \text { Quotients } \\
& \text { Add }-3.0,-1 . \\
& \text { Quotients }-3,-4 . \\
& \text { Add +1 } \quad 0,-2 .
\end{aligned}
$$

$\therefore+3$ is a root of the transformed equation, and dividing by $y-3$ the quotient is $y^{2}+4$, hence $y^{2}+4=0$, and $y= \pm \sqrt{-4}= \pm 2 \sqrt{-1}$.
$\therefore y=+3,+2 \sqrt{-1},-2 \sqrt{-1}$;
$x=\frac{y}{2}=+\frac{3}{2},+\sqrt{-1},-\sqrt{-1}$
(16) Here $3 x^{3}-2 x^{2}-6 x+4=0$.

Let $x=\frac{y}{3}$, then the transformat equation (Alt. 405, Cor.)
1s $y^{3}-2 y^{2}-18 y+36=0$, and +1 , and -1 are not roots.
Limit of positive roots, $1+18=19$; of negative ronts,

- $(1+\sqrt{18})$, or -6 .

Last term +36 .
Divisors,
$+18,+12,+9,+6,+4,+3,+2,-2-3,-4,-6$ Quotients,
$+2,+3,+4,+6,+9,+12,+18,-18,-12,-9,-6$

Add -18,
$-16,-15,-14,-12,-9,-6, \quad 0,-36,-30,-27,-24$.
Quotients,

$\therefore+2$ is a root of the transformed equation, and dividing by $y-2$ the quotient is $y^{2}-18$, hence $y^{2}-18=0$, and $y= \pm 3 \sqrt{2}$.
$\therefore y=2,+3 \sqrt{2},-3 \sqrt{2}$.
$x=\frac{y}{3}=\frac{2}{3},+\sqrt{2},-\sqrt{2}$.
(17) Here $8 x^{3}-26 x^{2}+11 x+10=0$.

Let $x=\frac{y}{8}$, then the transformed equation is
$y^{3}-26 y^{2}+88 y+640=0$, and +1 and -1 are not roots.
Limit of positive roots $1+26=27$; of negative roots $-(1+\sqrt[3]{640})$, or -10.
Last term +640 .

Divisors, $+20,+16,+10,+8,+5,+2,-2$,

$$
-5, \quad-8, \quad-10 .
$$

Quotients, $+32, \not-40,+64,+80,+128,+320,-320$,

$$
-128,-80,-64 .
$$

Add $+88,+120,-128,+152,+168,+216,+408,-232$,

$$
-40,+8,+24
$$

Quotients, $+6,+8, \quad *,+21, \quad *,+204,-116$, $+8,-1, \quad$ *.
Add -26. $-20,-18, \quad-5, \quad \quad+178,-142$, $-18,-27$, *.
Quotients, -1, *, \quad +89, +71,
Add $+1, \quad 0$,
$+90, \quad+72$.
$\therefore+20$ is a root of the transformed equation, and by dividing by $x-20$, the quotient is $y^{2}-6 y-32$, hence $y^{2}-6 y-32=0$, and $y=3 \pm \sqrt{41}$.
$\therefore y=+20$, and $3 \pm \sqrt{41}$;
$x=\frac{y}{8}=+\frac{5}{2}$, or $\frac{1}{8}(3 \pm \sqrt{41})$.
(18) Here $6 x^{4}-25 x^{3}+26 x^{2}+4 x-8=0$.

Let $x=\frac{y}{6}$, then the transformed equation is
$y^{4}-25 y^{3}+156 y^{2}+144 y-1728=0$, and +1 ara -1 sie not roots.
Limit of positive roots $1+25=26$; of negative roots - $(1+\sqrt[3]{144})$, or -7 .

Last term
-1728.

$$
0, \quad-6
$$

$\therefore y=+12,+4$, and -3 ; and by dividing by $(y-12)$ $(y-4)(y+3)$, the quotient is $y-12$, hence $y-12=0$, and $y=12$.

$$
\therefore x=\frac{y}{6}=+2,+2,+\frac{2}{3} \text {, and }-\frac{1}{2} .
$$

(19) Here $x^{4}-9 x^{3}+1{ }_{4}^{4} x^{2}+{ }_{2}^{27} x-{ }_{1}^{81}=0$.

Let $x=\frac{y}{2}$, then the transformed equation is
$y^{4}-18 y^{5}+45 y^{2}+108 y-324=0$.
Limit of positive roots, $1+18=19$; of negative roots,
$-(1+\sqrt[3]{108})$, or -6 .
Last term — 324 .

Divisors,	$\begin{aligned} & +18,+12,+9,+6 \\ & -2,-3,-4,-6 . \end{aligned}$	$-3,+2,$
Quotients,	$\begin{aligned} & -18,-27,-36,-54 \\ & +162,+108,+81,+54 \end{aligned}$	$1,-108,-162,$
Add +108,	$\begin{aligned} & +90,+81,+72,+54 \\ & +270,+216,+189,+162 \end{aligned}$	0, - 54,
Quotients,	$\begin{array}{rlll} *, & *,+ & 8,+ & 9 \\ -135,-72, & *, & * \end{array}$	* $0,-27$,
Add +45	$\begin{aligned} & \cdots \cdots+53,+54 \\ & -90,-27 . \end{aligned}$	+ $45,+18$,
Quotients,	$\text { } \quad *+9$	$+15+9$,
Add -18.	- 9,	- 3, - 9
Quotients	*,	- 1, *,
dd +1 .	$\cdots+4$,	

$\therefore+3$ is a root of the transformed equation.
The first derived polynomial of the transformed equation is $4 y^{3}-54 y^{2}+90 y+108$; now we shall find that $y-3$ is a divisor of this as well as the transformed equation, therefore +3 and +3 are two roots of the transformed equation (Art. 414), and if we divide it by $(y-3)(y-3)$ the quotient is $y^{3}-12 y-36$, hence $y^{2}-12 y-36=0$, and $y=6 \pm 6 \sqrt{2}$.

$$
\begin{aligned}
& \therefore y=+3,+3,+6+6 \sqrt{2},+6-6 \sqrt{2} \\
& x=\frac{y}{2}=+\frac{3}{2},+3,+3+3 \sqrt{2},+3-3 \sqrt{2}
\end{aligned}
$$

Note.- This example may be solved by Art. 414, but the above is the shortest method.

HORNER'S METHOD OF APPRDXIMATIUR.

Articles 430-434.

, 1) $x^{2}+5 x-12.24=0$
r

1	$+5$	-12.24	It is readily found tha:
		+	
	$+6$	-6.24	less than 2 , hence 1 is
	± 1	± 6.24	the integral part of the
1	$+7 *$		root.

$$
\frac{.8}{+7.8} \quad r=\frac{V^{\prime}}{{ }^{\prime}}=\frac{6.24}{7}=.8+
$$

(2)

$$
\begin{aligned}
& x^{2}+12 x-35.4025=0 . \\
& r s \\
& 1 \quad+12 \quad-35.4025 \quad \mid 2.45=x \text {. } \\
& \begin{array}{cl}
\begin{array}{c}
+2 \\
+14
\end{array} & +28 \\
1 & +7.1025^{*} \\
+16^{*} & +6.56 \\
\hline
\end{array} \\
& \frac{.4}{+16.4} \frac{+.8425}{.0} \\
& 1 \quad \frac{.4}{+16.8^{*}} \quad r=\frac{7.4}{16}=4+\text {. } \\
& \frac{05}{+16.85} s=\frac{.84}{16.8}=.05 .
\end{aligned}
$$

When the operation gives a remainder zero, we know from Art. 395. Cor., that the exact root is obtained.

Notr - In the solution of the succeeding problems, we shall merely present the operation, withont exhibiting the work by which the successive figures of the root are obtained, siuce they can generally be deesmined mentally, as in Long Division.

$$
4 \begin{array}{cl}
4 x^{2}-28 x \tag{3}\\
-98 \\
\frac{+32}{+4} & \underline{-29.25 *}
\end{array} \quad \begin{aligned}
& -61.25=0 . \\
& \\
& \\
& \\
&
\end{aligned}
$$

HORNERS METHOD OF APPROXIMATION. 27 \%

$$
\begin{aligned}
& 4 \frac{32}{+36^{*}} \frac{+27.16}{-2.09} \\
& \frac{2.8}{+38.8} \pm 2.09 \\
& 4 \frac{2.8}{+41.6^{*}} \\
& .2=.05 \times 4 \\
& +41.8
\end{aligned}
$$

(4)

$$
\begin{aligned}
& 8 x^{2}-120 x \quad+394.875=0 . \\
& 8-120 \quad+394.875 \quad 10.125=8 . \\
& \begin{array}{l}
+80 \quad-400 \\
-40 \quad-5.125^{*}
\end{array} \\
& \frac{+80}{+40^{*}} \underset{-1.045}{\square} \\
& \begin{array}{r}
.8 \\
\hline 40.8 \quad \pm \quad .8352 \\
\hline
\end{array} \\
& 8 \frac{.8}{+41.6^{*}}+\frac{.2098}{.0} \\
& \text {. } 16 \\
& +41.76 \\
& 8 \quad \frac{.16}{\not+41.92^{*}} \\
& .04=.005 \times 8 \\
& +41.96
\end{aligned}
$$

5) $\quad 5 x^{2}-7.4 x \quad-16.08=0$.
$5-7.4 \quad-16.08 \quad \mid 2.68=2$

$\frac{3}{+15.6} \pm 1.52$
b $\frac{3}{+18.6^{*}}$

$$
\frac{.4=.08 \times 5}{19.0 .}
$$

(6)

$$
\begin{aligned}
& 1 \begin{array}{ll}
\frac{.01}{2.22^{*}} & \frac{.000076}{2.208} \\
& \frac{.008}{2.236}
\end{array}=.000034 \text { nearly. }
\end{aligned}
$$

(7)

	$x^{2}-6 x$	$+6=0$.
1	-6	$+6 \quad 4.73205=x$.
	+4	-8
	-2	-2
	+4	+1.89
1	+2*	-. 11
	. 7	+.1029
	+2.7	-. 0.0071
	. 7	
1	+3.4*	$\underline{.0071}=.00205$.
	. 03	3.46
	+3.43	
	. 03	
1	3.46*.	

(8)

$x^{3}+4 x^{2}$		$\begin{aligned} & -9 x \\ & -9 \end{aligned}$	$-57.623625=0$.		
		-57.623625	$\underline{13.4 ⿹ 弔=x}$		
	$+3$		+21	+36	
	$+7$	$+12$	-21.623625*		
	$+3$	$+30$	18.944		
	$+10$	+42*	-2.679625	Operation	
	3	5.36	+ 2.679625	continued on	
1	$-\sqrt{-13^{*}}$	+47.36	. 0	page 275.	

HORNER'S METHOD OF APPROXTMATION. 275

	. 4	- 5.52
	$\stackrel{+13.4}{ }$	+52.88*
	4	. 7125
	+13.8	+53.5925
	4	
1	+14.2*	
	. 05	
	+14.25.	

(9) $2 x^{3}-50 x+32.994306=0$.

2	± 0	-50	+32.994306	$4.63=x$.
	$+8$	32	-72	
	+8	-18	-39.005694*	
	+8	+64	+36.672	
	$+16$	+46*	- 2.333694*	
	8	+15.12	+ 2.333694	
2	+24*	+61.12	. 0	
	+1.2	15.84		
	+25.2	+76.96*		
	1.2	. 8298		
	+26.4	+77.7898		
	1.2			
2	+27.6*			
	. 06			
	+27.66.			

$$
1 \begin{array}{ll}
\frac{.04}{2.62^{*}} & \frac{.007878}{+2.970547^{*}} \\
& \frac{.003}{2.623} \\
& \frac{.002047993}{2.97}=.000689 . \\
& \\
&
\end{array}
$$

(11)

$x^{3}+4 x^{2}-5 x-20=0$.				
1	+4		-5	-20 \|2.23608.
	+2		+12	+14
	$+6$		$+7$	-6"
	+2		+16	$\underline{+5.008}$
	$+8$		+23*	-. 992
	2		2.04	+.823167
1	+10*	1	+25.04	-. 168833
	. 2		2.08	
	$+10.2$		+27.12*	
	. 2		. 3189	
	+10.4		$\underline{+27.4389}$	
	. 2		. 3198	
1	$\underline{+10.6 *}$		27.7587*	
. 03				
$+10.63$				
. 03			$\underline{.168833}=.00608$.	
	$\Psi \underline{+10.66}$		27.76	

Note.- In the sulution of the remaining examples in this urtcle we shall use the abridged method employed in example 3 , page 382 , of the Algebra. The learner, however, who chooses to carry out tho eecimals fully will find uo difliculty in so doing
.12)

$$
\begin{aligned}
& x^{3}-2 x-5=6 \\
& 1
\end{aligned} \begin{array}{ll}
0 & -2 \\
+2 & \frac{4}{2} \\
& \frac{2}{4} \\
& \frac{8}{+10^{*}} \\
& \frac{8}{+6^{*}}
\end{array}
$$

$$
\begin{aligned}
& -5 \quad \mid 2.0945515=x \\
& +4 \\
& \frac{-1 *}{+0.949329} \\
& -.050671^{*} \\
& +.04451752 \\
& -.00615348^{*} \quad\left\{\begin{array}{l}
\text { See page } \\
277 .
\end{array}\right.
\end{aligned}
$$

HORNER'S METIIOD OF APPROXIMATION. 277

	. 09	. 5562	557875
	6.09	+11.1043*	57473*
	. 09	. 02508	55800
	$\overline{6.18}$	11.12938	1673*
	. 09	. 02508	1116
1	6.27*	+11.15446*	557*
		. 0031	558
		11.1575	
		. 003	
		+11.16*	

In finding the result true to seren places, it is not necessary to add any more figures to 6.27 , as it will not alter the result.

This example is found in the work of M. Fourier, "Analyse Uev Equations," where the result is given to thirty-two places of desimals : the result to forty places, as given by Gregory is, $x=2.0945514815423265914823865405793029638576$. We apprehexd few students will undertake to verify this result. The other two values of x are imaginary.

(38) $x^{3}+10 x^{2}-24 x-240=0$.			
1	$+10$	-24	$-240 \quad \mid 4.8989795=x$
	+ 4	+ 56	+ +128
	+14	+ 32	$-112 *$
	+ 4	+72 +72	+ 97.792
	$+18$	+104*	- 14.208*
	+ 4	$18.24{ }^{*}$	+12.899169
1	+22*	122.24	- 1.308831*
	. 8	18.88	1.165869792
	22.8	+141.12*	- . 142961208
	. 8	2.2041	. 131358087
	$\stackrel{23.6}{ }$	143.3241	11603121
	. 8	2.2122	10218295
1	+24.4*	+145.5363*	1384826
	. 09	. 197424	1313781
	24.49	145.733724	71045
	. 09	. 197488	72988
	24.58	+145.931212*	[Over.]

HORNER'S METIODOF APWRCXIMATION. 273
(15) $x^{4}-8 x^{3}+20 x^{2}-15 x+.5=0$.

1 -8	+20	-15	+ .5 1. $28.4724=x$
$+1$	-7	+13	-2.0
-7	+13	-2	-1.5*
± 1	-6	± 7	$\underline{+1.0496}$
-6	$+7$	+5*	-.4504*
+1	-5	. 248	. 4255385
-5	+2*	+5.248	248615*
+1	-. 76	. 104	210536
1 -4*	1.24	5.352*	38079*
. 2	$-.72$	- . 032768	36820
-3.8	. 52	5.319232	1259*
. 2	-. 68	- . 0522	1052
-3.6	-. 16^{*}	+ 5.2670*	207
. 2	-. 2496	- . 0036	210
-3.4	-. 4096	5.2634	
. 2	-. 2432	- . 0036	
$1-3.2^{*}$	-. 6528	+5.2598*	
. 08	-. 24	. 0006	
-3.12	-.89*	5.26	-
. 08	-. 01		
-3.04	-. 90		
. 08	-. 01		
-2.96	-. 91		
. 08			
1 -2.88*			

(16) $x^{4}+x^{2}-8 x-15=0$.

$1+0$	+1	-8	$-15 \quad 2.30277503=x$
± 2	+ 4	+10	+ 4
+2	$+5$	+2	-11*
2	8	26	10.8741
$+4$	13	+28*	- .1259*
2	12	8.247	. 09066704
+6	+25*	36.247	3523296
2	2.49	9.021	3179543
$1+8^{*}$	8.49	+45.258*	343753 [Over

. 3	2.58	. 06552	318129
8.3	30.07	45.33352	25624
. 3	2.67	. 06556	22724
8.6	32.74*	45.39908*	2900
. 3	. 02	02296	2726
8.9	32.76	45.42204	174
. 3	. 02	. 02296	136
, -7.2^{*}	32.78	45.4450*	
	. 02	23	
	32.80*	45.447	
		2	
		45.449^{*}	

(17) $x^{4}-59 x^{2}+840=0$.

Note.- This is a trinomial equation ano may be solved as a quadratie Art. 242), but it is placed here to be solved by llorner's method.

1	0	-59	0	+840 (4.8989795
	4	16	-172	-688
	$\overline{+4}$.	-43	-172	+152*
	4	32	- 44	-140.5184
	8	-11	-216*	+ 11.4816
	4	48	40.353	- 10.506:97359
	12	+37*	-175.648	+ .9746.641
	4	13.44	51.616	. 868978336
1	+16*	50.44	$-124032 *$. 105648074
	0.8	14.08	7.287849	97080804
	16.8	64.52	-116.744151	8557270
	. 8	14.72	7.44 .8807	754496.4
	17.6	+79.24*	-109.299324*	1022306
	. 8	1.7361	. 677032	970011
	18.4	80.9761	-108.62329	52995
	. 8	1.7442	.678:80	53885
1	+19.2 ${ }^{\circ}$	82.7003	-107.944012*	
	. 09	1.7523	07545	
	19.29	+84.4726*	-10786756	[See page 281.」

HOKAER'S METHOD OF APPROXIMATION. 2太]

$\frac{.09}{30.38}$	$\frac{.1564}{84.629}$	
$\frac{.09}{19.47}$	$\frac{.156}{84.785}$	-107.79111^{*}
$+19.56^{*}$	$+84.941^{*}$	-107.7852
.09	-156	.0059

(-9) $2 x^{4}+5 x^{3}+4 x^{2}+3 x=8002$.			
$8+5$	+ 4	+ 3	-8002 (7.33555
14	133	959	+6734 (40314
19	137	962	-1268*
14	231	2576	1125.7932
33	368	3538*	-142.2068*
14	329	214.644	119.86597542
47	697*	3752.644	-22.34082458*
14	18.48	220.242	20.11015620
+61*	715.48	3972.886^{*}	-2.23066838*
. 6	18.66	22.646514	2.01310385
61.6	734.14	3945.532514	- . 2175 f 453
6	18.84	22.703682	. 20133125
$\overline{62.2}$	752.98*	4018.236196^{*}	402666) 1623328(
6	1.9038	3.79505	1610665
$\overline{62.8}$	$\overline{754.8838}$	4022.03124	12663
6	1.9056	3.79665	12080
2 T $\frac{7}{1} 63.4^{*}$	$\overline{756.7894}$	4025.82789*	583
. 06	1.9074	. 3798	403
63.46	758.6968*	4026.2077	180
. 06	. 32	. 3798	161
$\underline{63.52}$	759.01	$\overline{4026.5875 *}$	19
. 95	. 32	38	
$\overline{63.58}$	$\overline{759.33}$	$\overline{4026.625}$	
. 06	. 32	38	
\% $763.94 *$	759.65*	$\overline{4026.663 *}$	$x=7.3355540314$.

Remark.- It is sometimes convenient by drawing lines, as in the preceding solution, to render separate and distinct the operation for finding each successive figure.

$$
\text { (19) } x^{5}+4 x^{4}-3 x^{3}+10 x^{2}-2 x=962
$$

3	30	144	624	290.21133
10	48	208	+ 814^{*}	-101.78867
3	39	261	153.3711	+94.64260
13	87	+469*	967.3711	-7.14607
3	48	42.237	166.5714	6.18160
16	+135*	511.237	1133.9425*	-. 96447
3	5.79	44.001	49.090	86793
$1+19^{*}$	140.79	555.238	. 183.0325	-9654
. 3	5.88	45.792	50.096	8682
19.3	146.67	601.030*	1233.128*	-972
. 3	5.97	12.6	3.19	868
19.6	152.64	613.6	1236.32	$\overline{-104}$
. 3	6.06	12.6	3.19	
$\overline{19.9}$	158.70*	626.2	$\overline{1239.51 *}$	
. 3		12.6	. 4	
20.2		$\overline{638.8^{*}}$	1239.9	
. 3			. 4	$x=3.385777$
1 +20.5*			$\overline{1240.3 *}$	

(20) $x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+5 x=54321$.

$1+2$	+ 3	+ 4	+ 5 -	-54321 (8414
8	80	664	5344	42792 ¢ 455
10	83	668	5349 -	-11529*
8	144	1816	19872	11088.97344
18	227	2484	25221*	-440.02636
8	208	3480	2501.4336	304.1105193
26	435	5964^{*}	27722.4336	-135.9160478
8	272	289.584	2620.0064	122.0290372
34	+707*	6253.584	30342.4400 *	- ${ }^{13.8870106}$
8	16.96	296.432	68.61122	12.2150180
$1+42^{*}$	$\overline{723.96}$	6550.016	30411.05122	-1.6719926
0.4	17.12	303.344	68.68888	8 1.5270320
42.4	741.08	6853.360*	50479.74010^{*}	-* -. 1449606
. 4	17.28	7.762	27.5192	. 1527032
42.8	758.36	6861.122	30507.2593	
. 4	17.44	7.766	27.5316	
43.2	个775.80*	6868.888	30534.7909 ${ }^{\text {7 }}$	

HORNER'S METHOD OF APPROXIMATION. 283

$\frac{.4}{43.6}$	$\frac{.4}{776.2}$	$\frac{7.770}{6876.658^{*}}$	$\frac{2.754}{30537.545}$
$1+44.0^{*}$	$\frac{.4}{776.6}$	$\frac{3.1}{6879.8}$	$\frac{2.75 \cdot 4}{20540.299^{*}}$
	$\frac{.4}{777.0}$	$\frac{3.1}{6882.9}$	$\frac{.34}{30540.64}$
	$\frac{.4}{777.4^{*}}$	$\frac{3.1}{6886.0^{*}}$	

ADDITIONALEXAMPLES.

Note.- As some instructors may desire additional examples to exercise their pupils, we subjoin the following, selected fro n a collection by Olinthus Gregory, Professor of Mathematics in the Royal Military Academy, Woolwich. They may also be employed as exercises in Sturm's Theorem, in finding the number and situation of the real roots.
(1)

(See Art. 434-6).
$x=\left\{\begin{array}{r}3.971960, \\ -1.576534, \\ -2.395426 .\end{array}\right.$
(2) $x^{3}-13 x^{2}+49 x-45=0$.

$$
x=\left\{\begin{array}{l}
5, \\
6.64575 \\
1.35425
\end{array}\right.
$$

(3) $x^{3}-6 x=2$.
$x=\left\{\begin{array}{r}2.6016791318, \\ -2.2618022452, \\ -.3398768866,\end{array}\right.$
(4) $x^{3}-27 x=36$.
$x=\left\{\begin{array}{r}5.7657415977, \\ -4.3206356862, \\ -1.4451059115 .\end{array}\right.$
(5) $x^{3}-13 x^{2}+38 x+16=0$.

$$
x=\left\{\begin{array}{l}
8, \\
5.3722813 \\
-.3722813
\end{array}\right.
$$

(6) $x^{3}-7 x+7=0$.

$$
x=\left\{\begin{array}{r}
1.69202147163009586962781489 \\
1.35689586789220944389439951 \\
-3.04891733952230531352221440
\end{array}\right.
$$

(7) $x^{3}-7035 x^{2}+15262754 x-10000730881=0$.
$x=1234$, or 2345 , or 3456 .
(8)
$x^{4}-6 x^{2}-16 x+21=0$
(See Art. 429).

$$
x=\left\{\begin{array}{c}
3, \text { or } 1,0^{\circ} \\
-2 \pm \sqrt{-3} .
\end{array}\right.
$$

(9) $x^{4}-19 x^{3}+123 x^{2}-302 x+200=0 . \quad x=\left\{\begin{array}{l}1.02803, \\ 4.00000, \\ 6.57653, \\ 7.09542,\end{array}\right.$
(10) $x^{4}-4 x^{3}-3 x^{2}-4 x+1=0$.

The two real roots are $x=4.7912$ and $x=.2087$.
(11) $x^{4}-36 x^{2}+72 x-36=0$.

$$
x=\left\{\begin{array}{r}
0.872983, \\
1.267949, \\
4.732050, \\
--6.872983
\end{array}\right.
$$

(12) $x^{4}+x^{3}-24 x^{2}+43 x=21$. (See Art. 429).

$$
x=\left\{\begin{array}{l}
1, \text { or } 3 . \\
1.1400549 \\
-6.1400549
\end{array}\right.
$$

(13) $x^{4}-27 x^{3}+162 x^{2}+356 x=1200$

$$
x=\left\{\begin{array}{r}
2.05607 \\
-3.00000 \\
13.15306 \\
14.79085
\end{array}\right.
$$

(14) $x^{4}-17 x^{2}+20 x-6=0$.

$$
x=\left\{\begin{array}{l}
4.6457513 \\
.6457513 \\
2 \pm \sqrt{2}
\end{array}\right.
$$

(15) $x^{4}-112.3 x^{3}+1243.53 x^{2}-2244.341 x+1112.111=0$. $x=1$, or 1.1 , or 10.1 , or 100.1 .

Article 435.

to extract theroots of numbers by HORNER'S METHOD.
(2) To find the cube root of 34012224 .

$$
\begin{array}{cccc}
1 & 0 & 0 & 34012294 \\
& \frac{3}{3} & \frac{9}{9} & \frac{27}{7012} \\
& \frac{3}{6} & \frac{18}{27 *} & \frac{5768}{124424} \\
& \frac{3}{9 *} & \frac{184}{2884} &
\end{array}
$$

HORNER'S METHOD OF APPROXIMATION. QSS

$$
\begin{array}{ll}
\frac{2}{92} & \frac{188}{3072^{*}} \\
\frac{2}{94} & \frac{3856}{311056} \\
\frac{2}{96} & \\
\frac{4}{964} &
\end{array}
$$

(3) To find the cube root of 9 .

$$
\begin{aligned}
& 100 \\
& \frac{2}{2} \quad \frac{4}{4} \\
& 9 \text { 2.080084. An. } \\
& \frac{2}{4} \quad \frac{8}{12^{*}} \quad \frac{.998912}{.001088} \\
& \frac{2}{6 *} \quad \frac{.4864}{12.4864} \quad \frac{.001038}{50} \\
& \frac{.08}{6.08} \frac{.4928}{12.9792 *} \quad- \\
& \frac{.08}{6.16} \\
& \frac{.08}{6.24^{*}}
\end{aligned}
$$

(4) To find the cube root of 30 .

$$
\begin{array}{cccc}
1 & 0 & 0 & 30 \\
& \frac{3}{3} & \frac{9}{9} & \frac{27}{3^{*}} \\
& \frac{3}{3} & \frac{18}{27^{*}} & \frac{2.791}{.209} \\
& \frac{3}{6} & \frac{.91}{27.91} & \frac{.20223}{.00677} \\
& \frac{.1}{9.1} & \frac{.92}{28.83^{*}} & \frac{579}{98} \\
& \frac{6}{9.1} & \frac{.1}{28.89} & \frac{87}{11} \\
& \frac{.1}{9.2} & -\frac{6}{9.3^{*}} & 28.95^{*}
\end{array}
$$

(5) To find the fifth root of 68641485507.

1	0	0	0	0	68641485507 (14)
	1	1	1	1	1 -
	$\underline{1}$	1	1	1	586414
	1	2	3	4	437824
	2	3	4	5*	14859085507
	1	3	6	59456	14859085507
	3	6	10*	109456	
	1	4	4864	82624	
	4	10*	$\overline{14864}$	192080*	
	1	216	5792	201926501	
1	5*	$\overline{1216}$	$\overline{20656}$	2122726501	
	4	232	6784		
	$\stackrel{5}{4}$	1448	27440*		
	4	248	1406643		
	58	1696	28846643		
	4	264			
	62	1960*			
	4	4949			
	$\overline{66}$	200949			
	4				
1	70*				
	7				
	707				

APPROXIMATION BY DOUBLE POSITIOA.
(2) $x^{3}+30 x=420$.

APPROXIMATION BY DOUBLEPGSITION, 287

By trial x is found to be greater than 6.17 , therefore let $x=6.17$ and 6.18.

6.17	-	- . x,	-	6.18
234.885	. .	- . x^{3}	. .	236.029
185.10	- .	. $30 x$	-	185.40
419.985	. . .	- results	.	421.429
1.444	:	. 01	:	. $015: 000103$.

$\therefore x=6.17+.000103=6.170103$ nearly.
(3) $144 x^{3}-973 x=319$.

$\therefore x=2.7+.048=2.748$, and by trial 2.75 is found to verify the equation exactly, hencc $x=2.75$.

In the application of the rule of Double Position to the solution of equations, the first correction is generally too small, as in the two preceding solutions, and as may be seen more particularly in the solution of example 5 .

To see the reason of this, it must be noticed that the sums, or the differences, of the higher powers of numbers, increase very rapidly as the numbers increase. Hence if two numbers equally distant from the true number, are substituted in any equation containing the second or higher powers of the unknown quantity the result, arising from the substitution of the greater number, will be farther from the true result than that obtained by the sub
stitution of the sinaller. And hence, by the operation of the rule, the correction will give for the true number a number too small: To illustrate this by an example, suppose we have the equation

$$
x^{3}-x=24 \text {, of which the root is } 3 \text {. }
$$

Let us notice the results obtained by the substitution of 2 and 4 for x.

Difference of the errors $=36-(-18)=54$,

$$
\text { then } 54: 2:: 18: \frac{2}{3} .
$$

Now the true correction is 1 , but we obtained $\frac{2}{3}$ because although the-suppositions, 2 and 4 , are equally distant from the true number, yet the corresponding results are unequally distant from it. Now the rule proceeds on the hypothesis that the errors of the results are proportional to the errors of the suppositions. But this is never exactly true, and is only nearly so when each of the suppositions is very near the true number. Attention to chis principle will often guide the pupil in selecting trial numbers for the second operation.
(4) $x^{3}+10 x^{3}+5 x=2600$.

By trial we find that 11 is so near the true number that we may ${ }^{4}$ once make trial of 11 and 11.1.

APPROXIMATION BY DOURLGPOSITION. 288

(b) $2 x^{3}+3 x^{2}-4 x=10$.

1.
$2 x^{3}$. 16

3........ $+3 x^{2}$. 12
-4 $-4 x$. 8
+1. results + +20
-9 errors. +10 19 : 1 : : 1 : 5 nearly. $\therefore x=1+.5=1.5$ nearly.
By trial, however, we find that 1.6 is too small, and 1.7 too great, let these therefore be the next two assumed numbers.

By trial we find 1.624 is too small, and 1.625 too great ; using these as the next two assumed numbers, we readily find the next two figures of the root.
(6) $x^{4}-x^{3}+2 x^{2}+x=4$.

It is easily seen by inspection, that x is a little more than 1 and by trial it is found greater than 1.1, and less than 1.2 ; le' these, therefore, be the two assumed numbers.

By trial \boldsymbol{x} is found greater than 1.146, and less than 1.147. By repeating the operation with these numbers, we readily find the next two figures of the root.
(7) $x^{4}+x^{3}+2 x^{2}-x=4$.

It is easily seen that x is a little more than 1 , and by trial it is found less than 1.1 ; therefore let 1 and 1.1 be the two assumed numbers

$$
\begin{aligned}
& \frac{1 . \text {. } x \text {. } 1.1}{1 . \text {. }+x^{4} \text {. } 1.4641} \\
& \text { 1........ }+x^{3} \text {. } 1.331 \\
& \text { 2........ }+2 x^{2} \text {. } 2.42 \\
& \text {-1 - } x \text {. -1.1 } \\
& \text { +3. results +4.1151 } \\
& \text {-1 errors. + .1151 } \\
& 1.1151 \text { : } 11 \text { : : } 1 \text { : } 09 \text { nearly. }
\end{aligned}
$$

By .fial \dot{x} is found to be greater than 1.09, therefore let 1.09 and 1.1 be the next two assumed numbers.

(8) $x^{4}-12 x+7=0$.

It is easily seen that x is a little greater than 2. and by trial if is found less than 2.1, therefore let these be the first two assurad n imbers.

APPROXIMATION BY DOUBLEFOSITION. 23
Bv trial we find 2.04 too small, and 2.05 too great.

By trial we find that 2.0472 is too small, and 2.0473 too great; then by using these as the next two assumed numbers we readily find the remaining figure of the root.
(9) $2 x^{4}-13 x^{2}+10 x-19=0$.

Here it is readily found that x lies between 2 and 3 , let these therefore be the two assumed numbers.

By trial we find that x is greater than 2.4, and less than 2.5 let these therefore be the two assumed numbers.

By trial it is found 2.45 is too small, and 2.46 too great, using shese as the next two assumed numbers, we obtain the next two tgures of the root.
(10) $\sqrt[3]{7 x^{3}+4 x^{2}}+\sqrt{10 x(2 x-1)}=28$.

By trial we readily find that x lies between 4 and 5 ; we there fare take these as the first two assumed numbers.

By trial we find x greater than 4.51 , and less than 4.52 ; therefore let these be the next two assumed numbers.

Article 487.

NEWTON S METHOD OF APPROXIMATION.
The learner must observe that A is what the proposed equa. tion becomes when $x=a$, and that A^{\prime} is what the first derived polynomial, or first derived function (Art. 411) becomes when $x=a$.
(1) Proposed equation $\mathrm{X}=x^{3}-2 x-5=0$;

First Derived function $\mathrm{X}^{\prime}=3 x^{2}-2$.
When 2 is substituted for x the result is -1 , and when 3 is substituted the result is +16 ; therefore (Art. 403), one real root of the equation lies between 2 and 3 , and is not much greater than 2. By trial we find that 2.1 gives a positive result, therefore the root lies between 2.0 and 2.1.
\therefore let $x=a+y=2+y$,
then $\mathrm{A}=(2)^{3}-2(2)-5$, and $\mathrm{A}^{\prime}=3(2)^{2}-2$,
$y=-\frac{\Lambda}{\Lambda}=-\frac{8-4-5}{12-2}=+.1$.

UARDAN'SSOLUTIONUFCUBICEQUATIONS, 293
$\therefore x=a+y=2+\left(-\frac{A}{A^{\prime}}\right)=2+.1=2.1$.
Next let $x=b+z=2.1+z$,
then $B=(2.1)^{3}-2(2.1)-5$, and $B^{\prime}=3(2.1)^{2}-2$.
$z=-\frac{B}{\mathbf{B}^{\prime}}=-\frac{(2.1)^{3}-2(2.1)-5}{3(2.1)^{2}-2}=-\frac{.061}{11.23}=-.0054$,
$\therefore x=b+z=2.1+(-.0054)=2.0946$.
Next let $x=c+z^{\prime}=2.0946+z$,
then $\mathrm{C}=(2.0946)^{3}-2(2.0946)-5=.000541550536$.

$$
C^{\prime}=3(2.0946)^{2}-2=11.16204748
$$

$z=--\frac{C}{C^{\prime}}=\frac{.000541550536}{11.16204748}=-.00004851$.
$\therefore x=C+z^{\prime}=2.0946+(-.00004851)=2.09455149$,
which is true to the seventh place of decimals; and by proceeding in a similar manner the value of x may be found to any required degree of accuracy.

Rrmark.- The great objection to Newton's Method of Approximation is, that we are obliged after each operation to commence with the entire approximate value of x in the same manner as at first, and no assistance is derived from the previous calculations except in having found a nearer value of the root. But in Horner's method we approximate coutinuously to the true value of the root by the evolution of single figure as in Long Division, and the Extraction of the square root in arithmetic, and each previous figure is of use in finding the next. Newton's method is now rarely used, and may be classed among the acientific curiosities of a past age.

Articles 438-441.

CARDAN'SSOLUTION OF CUBICEQUATIONS.
Formula. $\quad x^{3}+3 q x+2 r=0$.

$$
x=\sqrt[3]{ }\left(-r+\sqrt{r^{2}+q^{3}}\right)+\sqrt[3]{\left(-r-\sqrt{r^{2}+q^{3}}\right)} .
$$

(2) $x^{3}-9 x+28=0$. Here $q=-3$, and $r=+14$.

$$
x=\sqrt[3]{(-14+\sqrt{196--27})}+\sqrt[3]{(-14-\sqrt{196-27})}
$$

$$
-3=-4
$$

Dividing the given equation by $x-(-4)=x+4$, the qua. tient is $x^{2}-4 x+7$; hence $x^{2}-4 x+7=0$, and
$x=2 \pm \sqrt{-3}$.
(3) $x^{3}+6 x-2=0$. Here $q=+2$, and $r=-1$.
$x=\sqrt[3]{ }(+1+\sqrt{1+8})+\sqrt[3]{(+1-\sqrt{1+8})}=\sqrt[3]{4+\sqrt[3]{-2}}$.
$=\sqrt[3]{4}=\sqrt[3]{2}=1.58740-1.25992=.32748$.
(4) $x^{3}-6 x^{2}+13 x-10=0$.

To remove the second term (see Art. 407, Cor.,
$r=-\frac{A}{n}=-\frac{-6}{3}=+2$.
$\therefore x=y+2$, and the transformed equation is
$(y+2)^{3}-6(y+2)^{2}+13(y+2)-10=0 ;$
$y^{3}+y=0$, or $y\left(y^{2}+1\right)=0$,
whence $y=r$ and $y^{2}+1=0$; or $y= \pm \sqrt{-1}$.
$\therefore x=y+2=2$ or $2 \pm \sqrt{-1}$.
(b) $x^{3}+6 x^{2}-32=0$.

Let $x=y-\frac{6}{3}=y-2$.
$(y-2)^{3}+6(y-2)^{2}-32=0 ;$
or $y^{3}-12 y-16=0$.
Here $q=-4$, and $r=-8$.
$y=\sqrt[3]{ }(+8+\sqrt{64-64})+\sqrt[3]{(+8-\sqrt{64-64})}$
$=\sqrt[3]{+8+} \sqrt[3]{+8}=+2+2=+4$.
Dividing the equation $y^{3}-12 y-16=0$ by $y-4$ the quotient is $y^{2}+4 y+4$, hence $y^{2}+4 y+4=0$,
and $y=-2$, and -2 .
$\therefore x=y-2=4-2=2$, and $-2-2=-4$, and
$-2-2=-4$.
(6) $x^{3}+6 x^{2}+27 x-26=0$.

Let $x=y-i=y-2$, then
$(y-2)^{3}+6(y-2)^{2}+27(y-2)-26=0$.
or, $y^{3}+15 y-64=0$.
Herc $q=+5$, and $r=-32$.

$$
\begin{aligned}
& y=\sqrt[3]{(32+\sqrt{1024+125})}+\sqrt[3]{(32-} \sqrt{1024+125}) \\
&=\sqrt[3]{(32+33.896902513356585455)} \\
&+\sqrt[3]{(32-53.896902513356585455)} \\
&=\sqrt[3]{(65.896902513356585455)} \\
&-\sqrt[3]{(1.896902513356585455)} \\
&=4.0391346-1.2378889=2.801245+ \\
& \therefore x=y-2=2.801245-2=.801245 . \\
& \text { (7) } x^{3}-9 x^{2}+6 x-2=0 .
\end{aligned}
$$

Let $x=y+\frac{9}{3}=y+3$, then
$(y+3)^{3}-9(y+3)^{2}+6(y+2)-2=0$
or, $y^{3}-21 y-38=0$.
Here $q=-7$, and $r=-19$.

$$
\begin{aligned}
x & =\sqrt[3]{ }(19+\sqrt{361-343})+\sqrt[3]{(19-\sqrt{361-343})} \\
& =\sqrt[3]{ }(19+3 \sqrt{2})+\sqrt[3]{ }(19-3 \sqrt{2}) \\
& =\sqrt[3]{ }(19+3 \times 1.4142135623730950488) \\
& +\sqrt[3]{ }(19-3 \times 1.4142135623730950488) \\
& =\sqrt[3]{ }(23.242640687119285146) \\
& +\sqrt[3]{ }(14.757359312880714854) \\
& =2.8538325+2.4528418=5.306674+ \\
\therefore & x=y+3=5.306674+3=8.306674+
\end{aligned}
$$

Remark.- In the solutions to the last two examples, the extraction of the square root is carried to eighteen places of decimals, but this is further than is necessary to insure accuracy in extracting the cube root to seven places. For this purpose ten places, or even less, are quite sufficient.

After the pupil has faithfully performed all the operations in these two examples, let him solve the same equations by Horner's method, (Art. 434,) and he will then appreciate its superiority. To obtain tho resul', true to six places of decimals requires about one-fourth as much labor by Horner's Method as by Cardan's Rule, and the difference inereases rapidly with the increase in the number of places of decimala

Article 442.

RECIPROCALOR RECURRINGEQUATION思。
(1)
$x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$,
$x^{2}-10 x+26-\frac{10}{x}+\frac{1}{x^{2}}=0$, bv dividing by x^{2};
or, $x^{2}+\frac{1}{x^{2}}-10\left(x+\frac{1}{x}\right)=-26$;
Let $x+\frac{1}{x}=z$, then $x^{2}+\frac{1}{x^{2}}=z^{2}-2$, and
$z^{2}-2-10 z=-26$,
$z^{2}-10 z=-24$, and $z=6$ or 4 .

- $x+\frac{1}{x}=6$ or 4 ,
whence $x=3 \pm 2 \sqrt{2}$, or $2 \pm \sqrt{3}$.
(2) $x^{4}+5 x^{3}+2 x^{2}+5 x+1=0$.
$x^{2}+5 x+2+\frac{5}{x}+\frac{1}{x^{2}}=0$, by dividing by x^{2},
$x^{2}+\frac{1}{x^{2}}+5\left(x+\frac{1}{x}\right)=-2$.
Let $x+\frac{1}{x}=z$, then $x^{2}+\frac{1}{x^{2}}=z^{2}-2$, and
$z^{2}+5 z=0$, whence $z=0$, or -5 .
$\therefore x+\frac{1}{x}=0$, or -5 ,
whence $x= \pm \sqrt{-1}$, or $\frac{1}{2}(-5 \pm \sqrt{21})$.
(3) $x^{4}-\frac{5}{2} x^{3}+2 x^{2}-\frac{5}{2} x+1=0$
$x^{2}-\frac{5}{2} x+2-\frac{5}{2 x}+\frac{1}{x^{2}}=0$, by dividing by x^{2}
$x^{2}+\frac{1}{x^{2}}-\frac{5}{2}\left(x+\frac{1}{x}\right)=-2$.
Let $x+\frac{1}{x}=z$, then $x^{2}+\frac{1}{x^{2}}=z^{2}-2$, and
z^{2} - $2=0$, whence $z=0$, or $+\frac{5}{2}$.
$\therefore x+\frac{1}{x}=0$, or $+\frac{5}{2}$;
whence $x= \pm \sqrt{-1}$, or 2 , or $\frac{1}{2}$.
(4) $x^{4}-3 x^{3}+3 x-1=0$.

It is proved in Art. 4 II, Prop. III, that this equation is dipsible by $x^{2}-1, \therefore x^{2}-1=0$, and $x=-1$.

Dividing the given equation by $x^{2}-1$ the quotient is $x^{2}-3 x+1$, tnerefore $x^{2}-3 x+1=0$, whence $x=1(3 \pm \sqrt{5})$.
(5) $x^{5}-11 x^{4}+17 x^{3}+17 x^{2}-11 x+1=0$.

It follows froin Art. 442, Prop. II, that -1 is a root of this equation, therefore it is divisible by $x+1$ (Art. 395).

$$
\begin{array}{r}
1-11+17+17-11+1 \\
\frac{-1+12-29+12-1}{1-12+29-12+1 \quad 0}
\end{array}
$$

$\therefore x^{4}-12 x^{3}+29 x^{2}-12 x+1=0$.

$$
x^{2}-12 x+29-\frac{12}{x}+\frac{1}{x^{2}}=0, \text { by dividing by } x^{2}
$$

$$
x^{2}+\frac{1}{x^{2}}-12\left(x+\frac{1}{x}\right)=-29
$$

Let $x+\frac{1}{x}=z$, then $x^{2}+\frac{1}{x^{2}}=z^{2}-2$, and
$z^{2}-12 z=-97$, whence $z=9$ or 3 .
$\therefore x+\frac{1}{x}=9$ or 3 ;
whence $x=\frac{9 \pm \sqrt{77}}{2}$, or $\frac{3 \pm \sqrt{5}}{2}$.
(6) $4 x^{6}-24 x^{5}+57 x^{4}-73 x^{3}+57 x^{2}-24 x+4=0$.
$4 x^{3}-24 x^{2}+57 x-73+\frac{57}{x}-\frac{24}{x^{2}}+\frac{4}{x^{3}}=0$, by dividing by x^{2},
$4\left(x^{3}+\frac{1}{x^{3}}\right)-24\left(x^{2}+\frac{1}{x^{2}}\right)+57\left(x+\frac{1}{x}\right)=73$.
Let $x+\frac{1}{x}=z$, then $x^{2}+\frac{1}{x^{2}}=z^{2}-2$.
and $x^{3}+\frac{1}{x^{3}}=z^{3}-3 z$.
$\therefore 4\left(z^{3}-3 z\right)-24\left(z^{2}-2\right)+57 z=73$,
$z^{3}-6 z^{2}+\frac{45}{4} z=+\frac{25}{4}$.
To solve this equation by Cardan's Rule, Art. 441,
le: $z=y+2$, then $y^{3}-\frac{3}{4} y+\frac{1}{4}=0$,
$y=\sqrt[3]{ }\left(-\frac{1}{8}+\sqrt{\frac{1}{64}-\frac{1}{6} \frac{1}{1}}\right)+\sqrt[3]{\left(-\frac{1}{8}-\sqrt{\frac{1}{64}-\frac{1}{64}}\right)}$
$=-\frac{1}{2}-1=-1$.

Dividing $y^{3}-{ }_{4}^{3} y+\frac{1}{4}$ by $y+1$, the quotient is $y^{2}-y+\frac{1}{4}$, therefore, $y^{2}-y+\frac{1}{1}=0$, and $y=+\frac{1}{2}$, and $+\frac{1}{2}$.
$\therefore z=y+2=-1+2=1$, or $\frac{1}{2}+2=\frac{5}{2}$, and $\frac{5}{2}$.
$\therefore x+\frac{1}{x}=1$, whence $x=\frac{1 \pm \sqrt{-3}}{2}$;
or, $x+\frac{1}{x}=\frac{5}{2}$, whence $x=2$, o: $\frac{1}{2}$.
\therefore the six roots are $2, \frac{1}{2}, 2, \frac{1}{2}, \frac{1+\sqrt{-3}}{2}$, and $\frac{1-\sqrt{-3}}{2}$.

Article 44.

BINOMIAL EQUATIONS.

(1) Let $x^{4}=1$, then $x^{4}-1=0$, and $\left(x^{2}-1\right)\left(x^{2}+1\right)=0$
$\therefore x^{3}-1=0$, whence $x^{2}=1$, and $x=+1$, or -1 .
Also, $x^{2}+1=0$, whence $x^{2}=-1$, and $x=+\sqrt{-1}$, or, $-\sqrt{-1}$.
(2) Let $x^{5}=1$, then $x^{5}-1=0$, and the equation is divisible by $x-1, \therefore x-1=0$, and $x=+1$.
Dividing $x^{5}-1$ by $x-1$, and placing the quotient equal to zero, we have
$x^{4}+x^{3}+x^{2}+x+1=0$,
$x^{2}+x+1+\frac{1}{x}+\frac{1}{x^{2}}=0$, by dividing by x^{2},
$x^{2}+\frac{1}{x^{2}}+x+\frac{1}{x}=-1$.
Let $x+\frac{1}{x}=z$, then $x^{2}+\frac{1}{x^{2}}=z^{2}-2$, and
$z^{2}+z=1$; whence $z=\frac{-1 \pm \sqrt{5}}{2}=a$.
$\therefore x+\frac{1}{x}=a$, whence
$x=\frac{a}{2}+\frac{1}{2} \sqrt{a^{2}-4}$, or $\frac{a}{2}-\frac{1}{2} \sqrt{a^{2}-4}$, and since a has two values x will have four values.

$$
\begin{aligned}
a^{2} & =\frac{(-1 \pm \sqrt{5})^{2}}{4}=\frac{6-2 \sqrt{5}}{4} \text {, or } \frac{6+2 \sqrt{5}}{4} . \\
x & =\frac{a}{2}+\frac{1}{2} \sqrt{a^{2}-4}=\frac{-1+\sqrt{5}}{4}+\frac{1}{4} \sqrt{-10-2 \sqrt{5}} \\
& =\frac{1}{4}\{\sqrt{5}-1+\sqrt{ }(-10-2 \sqrt{5})\} ; \\
x & =\frac{a}{2}-\frac{1}{2} \sqrt{a^{2}-4}=\frac{-1+\sqrt{5}}{4}-\frac{1}{4} \sqrt{-10-2 \sqrt{5}} \\
& =\frac{1}{4}\{\sqrt{5}-1-\sqrt{(-10-2 \sqrt{5})\} ;} \\
x & =-\frac{a}{2}+\frac{1}{2} \sqrt{a^{2}-4}=-1-\sqrt{5}+\frac{1}{4} \sqrt{-10+2 \sqrt{5}} \\
& =-\frac{1}{4}\{\sqrt{5}+1-\sqrt{(-10+2 \sqrt{5})\} ;} \\
& a-\frac{1}{2}-\frac{1}{2} \sqrt{a^{2}-4}=\frac{-1-\sqrt{5}-\frac{1}{4} \sqrt{-10+2 \sqrt{5}}}{4} \\
& =-\frac{1}{4}\{\sqrt{5}+1+\sqrt{ }(-10+2 \sqrt{5})\} .
\end{aligned}
$$

APPENDIX.

INDETERMINATEANALYSIS.

Art. 1. Ïndeterminate Analysis is the resolntion of equar ticms where the number of unknown quantities is greater than the number of independent equations, and where the results are required in positive integers.

It is shown (Alg. Part II, Art. 168,) that whenever the number of unknown quantities is greater than the number of independent equations, an unlimited number of values may be found for each of the unknown quantities. But such conditions may exist as to limit the number of results; or even render the question impossible. Thus the equation $3 x+5 y=4 ?$, may be satisfied by an infinite number of values of x and y; but if it be required that these values shall be integral and posttrve, then we can only find $x=9$ or 4 , and $y=3$ or 6 .
l'roblems of this kind are called indeterminate, and the results are generally required in positive integers.

An indeterminate equation of the first degree, coritaining two unknown quantities, is of the form

$$
a x+b y=c,
$$

where a, b, and c are either positive or negative whole numbers.
Art. 2. Proposition I.- If an equation of the form $a x+b y$ $=c$, is in its lowest terms, it can not be solved unless a and b are prime to each other.

For, if possible, let $a=m d$, and $b=n d$; then $m d x+n d y=c$,

$$
\text { and } \therefore m x+n y=\frac{c}{d} \text {; }
$$

but, by hypothesis, a, b, and c contain no common factor, therefore $\frac{c}{d}$ is a fraction, and we have the sun of two whole .umber equal to a fraction, which is absurd; nence the proposition ie true.

Art. 8. Proposition II.- If a ardd b are prime to each other, each term of the series, $b, \because b, 3 b, 4 c .$. . ($a-1$) b, achen di. viled by a, will leave a different positive remainder.

For, if possible, let any two of the terms, as $m b$ and $n b$, when divided by a, leave the same remainder r, so that

$$
\frac{m b}{a}=p+\frac{r}{a} \text {, and } \frac{n b}{a}=q+\frac{r}{a} ;
$$

Subtracting the second equation from the first,

$$
\frac{m b}{a}-\frac{n b}{a}=p-q, \text { or }{ }_{a}^{b}(m-n)=p-q ;
$$

mut the left hand member of this equality is a fraction, since $\frac{b}{a}$ is a fraction in its lowest terms, and $m-n$ less than a, each being less than a, therefore we have a fraction equal to a whole number, which is absurd; hence the remainders are all different.

Illustration.- Let $a=4$, and $b=7$; then $7,7 \times 2$, and 7×3, when divided by 4 , leave the different remainders 3,2 , and 1 .

Cor. Since the remainders are all different, and are $a-1$ in number, each being less than u, therefore they include all numbers from 1 to $a-1$.

Art. 4. Proposition III.- The equation ax一by=士,1 is always possible in integers, if a and b are prime to each other.

By the Corollary to the preceding proposition, if b, or some multiple of b less than $a b$, be divided by a, the remainder will be 1 ; let y he that multiple, then

$$
\frac{y \times b}{a}=x+\frac{1}{a} ; x \text { being the integral part of the }
$$

quotient and 1 the remainder. By clearing and transposing this gives $a x-b y=-1$, which proves part of the proposition. Again, by the same corollary, y may be some coëfficient of b less than a, such that $y \times b$, when divided by a, will leave a remainder $a-1$, that is

$$
\frac{y \times b}{a}=x+\frac{a-1}{a}, x \text { leing the integral part of }
$$

the quotient, and $a-1$ the remainder; by clearing this gives $b y=a x+a-1$; by transposing and factoring $a(x+1)-h y=1$; let $x+1=x^{\prime}$, this gives $a x^{\prime}-b y=1$, which proves the remaining part at the proposition. Hence, if a and b are prime to each other, such values of x and y may always be found as will satisfy the equation $a x-b y= \pm 1$.

Art. 5. Proposition IV.- If a and b are prime to each other, the equation $a x-b y= \pm c$, i s always possible, and an indefinite number of integral values may be assigned to x and y, which will satisfy the equation.

For $a x^{\prime}-b y^{\prime}= \pm 1$, is always possible (Art. 4).
$\therefore c\left(a x^{\prime}-b y^{\prime}\right)= \pm c$, or $a c x^{\prime}-b c y^{\prime}= \pm c$, is always possible,
Let $\quad c x^{\prime}=x$ and $c y^{\prime}=y$, then
$a x-b y= \pm c$, is always possible.
Let one solution be $x=p$ and $y=q$, then

$$
a x-b y=a p-b p \text {, or } a x-a p=b y-b q \text {. }
$$

$$
\begin{gathered}
\cdots \frac{a(x-p)}{b(y-q)}=1, \text { and } \frac{x-p}{y-q}=\frac{b}{a}=\frac{m b}{m a}, \\
\text { or, } x-p=m b, \text { and } y-q=m a ; \\
\therefore x=p+m b, \text { and } y=q+m a .
\end{gathered}
$$

and since m may be either positive or negative, and have any value whatever from 0 to infinity, the number of values of x and y are indefinite.

Cor. Since p and q are integers, and since m may be etther positive or negative, m may be so assumed, that x shall be less than b, or that y slall be less than a; for making m equal to 0 , $-1,-2,-3, \& c$., successively, we shall have

$$
\begin{aligned}
x & =p, p-b, p-2 b, \& c . \\
\text { and } y & =q, q-a, q-2 a, \& c .
\end{aligned}
$$

where it is obvious that one of the values of x must be less than h, and one of the values of y less than a, whatever be the values of p and q.

Art. 6. Proposition V.- The equalion $a x+b y=c$, is always possible in positive whole numbers, provided a and b are prime to each other, and c is greater than $a b-a-b$.

For, if $c=(a b-a-b)+r$, the equation becomes

$$
\begin{gathered}
a x+b y=a b-a-b+r ; \\
\therefore x=\frac{a b-a-b-b y+r}{a}=b-1-\frac{(y+1) b-r}{a} ;
\end{gathered}
$$

Since $b-1$ is an integer, the possibility depends on

$$
\frac{(y+1) b-r}{a}=z, \text { being an integer. }
$$

Let $y+1=y^{\prime}$, then we have $a z-b y^{\prime}=-r$, which is alwaya
possible, (Art. 4); let then y^{\prime} be less than a, or $y+1<a$ (PropIV, Cor.), then in the equation $\frac{(y+1) h-r}{a}=z$, z mus. be less than $b-1$, therefore

$$
x=b-1-\frac{(y+1) b-r}{a}=b-1-z \text {, must be some } 1 \mathrm{n} \text {. }
$$

teger number; hence the equation $a x+b y=c$ is always possible when a and b are prime to each other, and $c>(a b-a-b)$.

Remark. - The last two propositions are of great practical utility, inasmuch as they show the possibility or impossibility of enuations of this kind,

Art. 7. Problem I.- To find positive integral values of x and y^{\prime} in the equation

$$
\begin{aligned}
a x-b y & =c, \\
\text { or, } a x+b y & =c,
\end{aligned}
$$

a and b being prame to each other, and c being either plus or minus. $a x-b y=c$, gives $x=\frac{b y+c}{a}=p y+q+\frac{b^{\prime} y+c^{\prime}}{a}$, where $p y+q$ rep$r 3$ sents the integral part of the quotient, and $b^{\prime} y+c$ the remainder, b^{\prime} and c^{\prime} being less than u. Now in order that the value of d. shall be integral, the remainder $b^{\prime} y+c^{\prime}$ must lie divisible by a_{n} I ence $\frac{b^{\prime} y+c^{\prime}}{a}$ must be a whole number.

If now we take the difference between $\frac{a y}{a}$, which is evidently a whole number, and that multiple of $\frac{b^{\prime} y+c^{\prime}}{a}$ in which $p^{\prime} b^{\prime} y$, the multiple of $b^{\prime} y$, is nearest to $a y$, we shall have a remainder of the form $\frac{b^{\prime \prime} y+c^{\prime \prime}}{a}$, in which $b^{\prime \prime}$ is less than b^{\prime}. Again, if we take the difference of $\frac{b^{\prime} y+c^{\prime}}{a}$, and that multiple of $\frac{b^{\prime \prime} y+c^{\prime \prime}}{a}$, in which the multiple of $\mathrm{b}^{\prime \prime} y$ is nearest to $b^{\prime} y$, we shall have a remainder of the form $\frac{b^{\prime \prime \prime} y+c^{\prime \prime \prime}}{a}$, which must be a whole number. Hence, by continuing this process, we shall finally obtain a remainder of the form $\frac{y+k}{a}$, or $\frac{y-k}{a}$, in which the coëfficient of y is 1 .

Now if we divide k by a, and call the quotient q, and the remainider r, we shall have $\frac{y+k}{a}=q+\frac{y+r}{a}$, or $\frac{y-k}{a}=-q+\frac{y-7}{a}$, which are evidently whole numbers when $\frac{y+r}{a}$, or $\frac{y-r}{a}$ are whole numbers. Now let $\frac{y \dashv-r}{a}=w$, a whole number ; then

$$
y=a w-r \text {, where } w \text { may be any whele }
$$ number that will render y positive. In a similar manner, if r is negative, we find $y=a w+r$.

It is evident tinat the same general method may be applied to find the value of y in the equation $a x+b y=c$.

Since the subtraction of fractions does not produce any change n the common denominator, this may be omitted in the operation, and we may proceed according to the following
Rule.- Reduce the equation to the form $x=b y+c$; perform the d nision of by $+c$ by a, and catl the remainder $b^{\prime} y+c^{\prime}$.
Take the difference between ay and that multiple of $b^{\prime} y+c^{\prime}$ in which the multiple of b'y is the nearest to ay, and calt the remainder $l^{\prime \prime} y+c^{\prime \prime}$.

Again, take the difference between $b^{\prime} y+c^{\prime}$, and that multiple of $l^{\prime \prime} y+c^{\prime \prime}$, in which the multiple of $b^{\prime \prime} y$ is the nearest to $b^{\prime} y$. And so on, till we get a remainder of the form $y+k$, or $y-k$. Lastly divide k by a and call the remainder r; then $y=a w-r$, or $a w+r$, according as k is plus or minus; and w may be any whole number that will render y positive.

Having the value of y, the general value of x is obtained by substituting the value of y in the given equation.
When the given equation is of the form $a x+b y=c$, the value of y is found on the same principles, except that it may be necessary to add instead of subtracting, to reduce the coëfficient of y.

The preceding rule depends on the principle that the sum or diffirence of two whole numbers is a volole number; and that any mulliple of a whole number is also a whole number.

EXAMPLES.

1. Given $7 x-12 y=15$, to find x and y in positive whale num bers.

$$
\text { Here } x=\frac{1: y+15}{7}=y+2+\frac{5 y+1}{7}, \text { and } a=7 .
$$

$$
\begin{aligned}
& 7 y=a y \\
& \frac{5 y+1}{}=b^{\prime} y+c^{\prime}, \text { and the multiple }=1, \\
& \frac{2 y-1}{}=b^{\prime \prime} y+c^{\prime \prime}, \\
& 4 y-2=p b^{\prime \prime} y+p c^{\prime \prime}, \text { where } p=2, \\
& \frac{5 y+1}{y+3}=b^{\prime} y+c^{\prime}, \\
& \frac{y+3}{7}=w, \text { and } y=7 w-3, \\
& x=\frac{12(7 w-3)+15}{7}=12 w-3 .
\end{aligned}
$$

Let $\quad w=1,2,3, \& c$.
Then $x=9,21,33, \& c$.,
and $y=4,11,18, \& c$., where it is obvious the nambel of values of x and y are unlimited.
2. Given $7 x+11 y=47$, to find x and y in positive whole nambers.

Here $x=\frac{47-11 y}{7}=0-y+\frac{5-4 y}{7}$, and $a=7$.

$$
\begin{aligned}
& 5-4 y=b^{\prime} y+c^{\prime}, \\
& 10-8 y=p b^{\prime} y+p c^{\prime}, \\
& 7 y=a y, \\
& \frac{10-y}{} \\
& \frac{10-y}{7}=1+\frac{3-y}{7} ; \\
& \frac{3-y}{7}=w, \therefore y=3-7 w ; \\
& x=\frac{47-11(3-7 w)}{7}=2+11 w .
\end{aligned}
$$

Let $w=0$, then $x=2$, and $y=3$, the only values.
3. How can 78 francs be paid with pieces of 5 francs and of 3 francs, and in how many ways ?

Let $x=$ the number of 5 franc pieces, and $y=$ the number of 3 franc pieces.

Then $\quad 5 x+3 y=78$,

$$
\begin{gathered}
x=\frac{78-3 y}{5}=15+\frac{3-3 y}{5}, \\
3-3 y=b^{\prime} y+c^{\prime},
\end{gathered}
$$

$$
\begin{aligned}
6-6 y & =p b^{\prime} y+p c^{\prime} \\
\frac{5 y}{6-y} & =a y, \\
\frac{6-y}{5} & =1+\frac{1-y}{5} ; \text { let } \frac{1-y}{5}=w, \quad \cdot y=1-5 w ; \\
x & =\frac{78-3(1-5 w)}{5}=15+3 w .
\end{aligned}
$$

Let $w=0,-1,-2, \& c$.
Then $x=15,12,9,6,3,0$.
$y=1,6,11,16,21,26$. Hence it may be paid in 6 ways.

EXAMPLESFOR PRACTICE.

4. Given $5 x+7 y=19$, to find x and y.

Ans. $x=1, y=2$, only one solutéen.
5. Given $7 x+19 y=92$, to find x and y.

Ans. $x=5, y=3$, only one solution.
6. $5 x+7 y=29 . \quad x=3, y=2$.
7. $13 x+14 y=200 . \quad x=10, y=5$.
8. $27 x+16 y=1600 . \quad x=48,32,16$.

$$
y=19,46,73
$$

9. A owes $\mathrm{B} £ 100$, but A has no money but guineas, and B has only 50 crowns; how can the debt be paid, a guinea being if shillings, and a crown 5 shillings? Anヶ. A gives B 100 guineas, and receives 20 crowns from B; or A gives B 105 guineas, and receives 41 crowns from B.
10. Find two fractions, whose denominators shall be 7 and 9 , and their sum equal to $\frac{10}{2 \frac{1}{1}}$.

Let x and y denote the numerators of two fractions, then

$$
\begin{array}{r}
\frac{x}{7}+\frac{y}{9}=\frac{1}{2} \frac{9}{1}, \text { or } 9 x+7 y=57, \text { whence } x=4, \text { and } y=3 . \\
\\
\text { Ans. } \frac{1}{7} \text { and } \frac{3}{9} .
\end{array}
$$

11. Find two fractions whose denominators are 7 and 9 , and

12. Of the equations $9 x+17 y=127$, and $9 x+17 y=128$, which is possible, and which impossible?

Ans. First impossible. Second pussib'e, $x=1, u=\bar{i}$.

Art. 8. Problem II.- To determine the number of solutions of which the equation

$$
a x+b y=c,
$$

will adnit in positive whole numbers.
Let m denote an undetermined positive whole number, and let x^{\prime}, y^{\prime} satisfy the equation

$$
\begin{aligned}
& \quad a x^{\prime}-b y^{\prime}=1, \\
& \text { then } \quad a c x^{\prime}-b c y^{\prime}=c, \\
& \text { and } \quad-a b m+a b m=0, \\
& \text { whence, } a\left(c x^{\prime}-b m\right)+b\left(a m-c y^{\prime}\right)=c ; \\
& \text { but } \quad a x+b y=c, \\
& \quad \therefore x=c x^{\prime}-b m, \text { and } y=a m-c y^{\prime} .
\end{aligned}
$$

Now it is evident that the number of solutions will be the same av the number of values that can be assigned to m that will render $b m$ less than $c x^{\prime}$, and $a m$ greater than $c y^{\prime}$,

$$
\begin{aligned}
& b m<c x^{\prime}, \text { gives } m<\frac{c x^{\prime}}{b} \\
& a m>c y^{\prime}, \text { gives } m>\frac{c y^{\prime}}{a}
\end{aligned}
$$

Hence the number of values of m will correspond to the differ ence between the integral parts of the fractions

$$
\frac{c x^{\prime}}{b}, \text { and } \frac{c y^{\prime}}{a},
$$

except when $\frac{c x^{\prime}}{b}$ is a whole number. In this case, since

$$
m<\frac{c x^{\prime}}{b} \text {, the number of solutions will be }
$$ one less, or, which amounts to the same thing $\frac{b}{b}$ must be con sidered a fraction.

EXAMPLES。

1. Given $5 x+11 y=254$, to find the number of values of x and y in whole positive numbers,

$$
\begin{aligned}
& 5 x^{\prime}-11 y^{\prime}=1 \\
& x^{\prime}=\frac{11 y^{\prime}+1}{5}=2 y^{\prime}+\frac{y+1}{5} \therefore y^{\prime}=5 w-1
\end{aligned}
$$

By substitnting we find $x^{\prime}=11 w-2$.

Let $\quad w=1$, then $x^{\prime}=9$, and $y^{\prime}=4$.

$$
\begin{aligned}
& \frac{c x^{\prime}}{b}=\frac{254 \times 9}{11}=207_{\mathrm{T}}^{9}, \\
& \frac{c y^{\prime}}{a}=\frac{254 \times 4}{5}=203 \frac{1}{\bar{b}} . \quad \frac{c x^{\prime}}{b}-\frac{c y^{\prime}}{a}=4 .
\end{aligned}
$$

This result may be verified by actually finding the valnes of x and y. Thus, $x=9,20,31$, or 42 ; and $y=19,14,9$, or 4 .
2. Given $7 x+9 y=2342$; to find the number of values of \boldsymbol{z} and y in positive whole numbers. Ans. 37.
3. Given $11 x+1^{17} y=987$, to find the number of values of x and y in positive integers. Ans. 5.
4. Given $9 x+13 y=2000$, to find the number of solutions in positive integers. Ans. 17.
5. In how many ways can $£ 100$ be paid in crowns and guineas, the crown being 5s. and the guinea 21s. Ans. 19.
6. In how many ways can $£ 1053$ be paid in guineas and moidores, the guinea being 21 s . and the moidore 27 s . ?

Ans. 111 ways.
Art. 9. Problem III.- To find the integral values of x, y, and z, in the equation $a x+b y+c z=d$.

Let c be the greatest coefficient in this equation, then since the values of x and y can not be less than 1 , the value of z can not exceed

$$
\frac{d-a-b}{c}
$$

But

$$
x=\frac{d x-b y-c z}{a}
$$

therefore, by operating on this equation, according to the method employed in Art. 6, we shall obtain a result of the form
$\frac{y \pm n z \pm r}{a}$; let this equal w, then
$y=a w \pm n z \pm r$, where z may have any value
from 1 to $\frac{d-a-b}{c}$, that will give positive integral values to x and y.

EXAMPLES.

1. Given $3 x+5!1+7 z=50$.

Here z can not exceed $\frac{50-3-5}{7}=6$.

$$
\begin{aligned}
& x=\frac{50-5 y-7 z}{3}=16-y-2 z+\frac{2-2 y-z}{3} ; \\
& 3 y=a y \text {, } \\
& \frac{2-2 y-z}{y-z+2}, \therefore y=3 w+z-2 \\
& x=\frac{50-5(3 w+z-2)-7 z}{3}=20-5 w-4 z, \\
& \text { If } w=1, x=15-4 z \text {, let } z=1,2,3 \text {, } \\
& y=1+z, \quad \text { then } x=11,7,3, \\
& y=2,3,4 \text {. } \\
& \text { If } w=2, x=10-4 z \text {, let } \quad z=1,2 \text {, } \\
& y=4+z \text {, then } x=6,2 \text {, } \\
& y=5,6 \text {. } \\
& \text { If } w=3, x=5-4 z \text {, let } z=1 \text {, } \\
& y=7+z, \quad \text { then } x=1, \\
& y=8 \text {. }
\end{aligned}
$$

Therefore, the whole number of solutions is 6 .
When the number of solutions is numerous, the precess will become tedious; but the object of inquiry in such prublems is generally not to find the solutions themselves, but to determine the number of which the equation admits, the method of doing which will be explained in the next problem.
2. Given $2 x+3 y+4 z=21$, to find all the positive integral values of x, y, and z.
Ans. $2=1:\left\{\left.\begin{array}{l}x=7,4,1 ; \\ y=1,3,5 .\end{array} \right\rvert\, z=2:\left\{\left.\begin{array}{l}x=5,2 ; \\ y=1,3 .\end{array} \right\rvert\, z=3:\right.\right.$

$$
\left\{\left.\begin{array}{l}
x=3 ; \\
y=1 .
\end{array} \right\rvert\, z=4: \quad\left\{\begin{array}{l}
x=1 . \\
y=1
\end{array}\right.\right.
$$

3. Given $2 x+5 y+4 z=27$, to find all the positive integral values of x, y, and z.

$$
\text { Ans. }\left\{\begin{array}{l|l|l|l|l|l|l}
z=1 & 2 & 3 & 4 & 5 & 1 & 2 \\
y=1 & 1 & 1 & 1 & 1 & 3 & 3 . \\
x=9 & 7 & 5 & 3 & 1 & 4 & 2
\end{array}\right.
$$

4. Given $17 x+19 y+21 z=400$, to find the integral values of x, y, and z.

$$
\begin{aligned}
& \text { Ans. } z=1,2,3,4,5,6,11,12,13,14 \text {, } \\
& y=11,9,7,5,3,1,8,6,4,2 \text {, } \\
& x=10,11,12,13,14,35,1,2,3,4 .
\end{aligned}
$$

Art. 10. Problem IV:=-To determine the number of solutions of which the equation $\quad a x+b y+c z=d$
will almit, at least two of the coëfficients, a, b, c, beirg prime to each other.
By Art. 8 the number of solutions of which the equaticn $a x+b y=c$ will admit, is expressed by the difference between the integral parts of $\frac{c x^{\prime}}{b}$, and $\frac{c y^{\prime}}{a}$, where x^{\prime} and y^{\prime} are to be found from the equation $a x^{\prime}-b y^{\prime}=1$. Now in the equation
$a x+-b y+c z=d$, if we transpose $c z$, wo have $a x+l y=d-c z$; therefore, if we make $z=1$, $2,3,4, \& c$., successively, the number of solutions in the equations

Now the sum of these differences will be the whole number of solutions of which the equation admits. Therefore, if we take the sum of the integral parts of the arithmetical series

and also of the arithmetical series

the difference of the two will be the whole number of integral solutions. Now in each of these serics the first and last terms, and also the number of terms are known; for the general term in the first series being $\frac{(d-z c) x^{\prime}}{b}$, and in the second, $\frac{(d-z c) y^{\prime}}{a}$ the extreme terms will be found by taking $z=1$, and z the greatest whole number in $\frac{d-a-b}{c}$; the last value of z being found by making x and y, each equal 1 in the given equation. It is also obvious that the last value of z expresses the number of terms in the series.

Therefore, if we find the sums of the terms in each series, and deduct from each the sum of its fractional parts, we shall obtain the sums of the integral parts of cach series.

In finding the sums of the fractional parts, since the denomina. tor is the same, it is obvious that the fractions must recur in periods, and that the greatest number of fractions in each period can never exceed the denominator, since any divisor, as b, can leave no other remainder than those from 1 to $b-1$; hence, the shortest method of finding the sum of all the fractions, will be to find the sum of the fractions in one period, and multiply this by the number of periods. If there are not an exact number of periods, the overplus fractions must be summed by themselves, observing that they will recur in the same order as in the first period. Also, in the first series, $\frac{b}{b}$ must be considered as a frac tion. (See Art. 8.)

EXAMPLES.

1. Given $3 x+5 y+7 z=100$, to find the number of solutions of which it admits in positive integers.

Here $3 x+5 y=100-7 z$. If we make $z=1,2,3,4$. . 13, in succession, then the number of solutions, of which the equation $3 x+5 y=d$ will admit, is expressed by $\frac{d x^{\prime}}{5}-\frac{d y^{\prime}}{3}$, where x^{\prime} and y^{\prime} are to be found from the equation $3 x^{\prime}-5 y^{\prime}=1$, (x^{\prime} being $=2$, and $y^{\prime}=1$). Therefore, in the equation $3 x+5 y=100-7 z$, if we take $z=1,2,3$, to 13 , which is the limit to the value of z, the number of solutions in the equations $3 x+5 y=9,3 x+5 y=16$, and to $3 x+5 y=93$, will be expressed by $\frac{9 x^{\prime}}{5}-\frac{9 y^{\prime}}{3}, \frac{16 x^{\prime}}{5}-\frac{16 y^{\prime}}{3}$, $\& c .$, to $\frac{93 x^{\prime}}{5}-\frac{93 y^{\prime}}{3}$, or by

$$
\left\{\frac{9 x^{\prime}}{5}+\frac{16 x^{\prime}}{5} \cdots+\frac{93 x^{\prime}}{5}\right\}-\left\{\frac{9 y^{\prime}}{3}+\frac{16 y^{\prime}}{3} \cdots+\frac{93 y^{\prime}}{3}\right\} .
$$

Or, by substituting the values of x^{\prime} and y^{\prime} the number of soiv tions will be expressed by the difference of the arithmetical series.

$$
\begin{aligned}
& \frac{2.9}{5}+\frac{2.16}{5}+\frac{2.23}{5}+\frac{2.30}{5} \cdots \cdot \frac{2.93}{5}, \\
& \text { and } \frac{1.9}{3}+\frac{1.16}{3}+\frac{1.23}{3}+\frac{1.30}{3} \cdots \quad . \quad \frac{1.93}{3} \text {. }
\end{aligned}
$$

The sum of the first series is $265 \frac{1}{3}$, and of the second 221. But as it is only the sum of the integral numbers in each that is wanted, we must deduct from each the sum of the fractions in it.

The fractions in the first series occur in the following order. $\frac{3}{5}, \frac{2}{5}, \frac{1}{5}, \frac{5}{3}, \frac{1}{5}$; and as there are five terms in this period there will be ($\frac{13}{5}=2 \frac{3}{5}$) two such periods, and 3 terms besides. $\frac{3}{5}+\frac{2}{5}+\frac{1}{5}$ $+\frac{5}{5}+\frac{4}{5}=\frac{1.5}{5}=3$, and $3 \times 2=6$, $\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=1 \frac{1}{5}$, and $6+1 \frac{1}{5}=7 \frac{1}{5}$, the sum of the fractions in the first series. In the second series $\frac{9}{3}+\frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1 ; \frac{13}{4}=4 \frac{1}{3}$, hence there are 4 periods of fractions, and the whole is $1 \times 4=4$.

$$
265 \frac{1}{3}-7 \frac{1}{5}=258 \frac{2}{15} ; 221-4=217
$$

$258 \frac{2}{5}-217=41 \frac{2}{\overline{3}}$, hence the number of solutions required is 41 .
2. Given the equation $2 x+3 y+5 z=41$, to find the number of solutions of which it admits in integers.

Ans. 21.
3. Given the equation $5 x+7 y+11 z=224$, to find the number of solutions of which it admits in integers.

Ans. 59.
4. It is required to determine the number of integral solutions of which the equation $17 x+21 y+30 z=3000$ will admit.

Ans. 400.
5. It is required to determine the number of integral solutions of which the equation $7 x+9 y+23 z=9999$ will admit.

Ans. 34365.
Art. 11. In the preceding problem it is required that at least two of the coëfficients shall be prime to each other. When this is not the case, the proposed equation may be easily transformed to another possessing the required property, as is shown in the following example.

Given $12 x+15 y+20 z=601$.
Transposing $20 x$, and dividing by 3 , we have

$$
\begin{aligned}
& 4 x+5 y=200-6 z+\frac{1--2 z}{3} ; \\
& \frac{1-2 z}{3}+\frac{3 z}{3}=\frac{z+1}{3}=u, \text { hence } z=3 u--1 ; \text { whence }
\end{aligned}
$$

by substitution the proposed equation becomes

$$
\begin{aligned}
& 12 x+15 y+20(3 u-1)=\approx 601, \text { which, by reduction, } \\
& 4 x+5 y+20 u=207 .
\end{aligned}
$$

oecomes
Now in this equation x and y have the same values as in the one proposed, and therefore the number of solutions must be the same.

Art. $\mathbf{1}$ ge. Problem V. To find the values of three intinoun quantities in tur cquations.

If two equations, containing three unknown quartities be given one of the unknown quantities may be eliminated, and the value of the other unknown quantitios found as in Art. 7 .

EXAMPLES.

1. Given $3 x+5 y+2 z=40\}$ to find all the integral values of $4 x+4 y+z=33\} x, y$, and z.
By eliminating z, we obtain $5 x+3 y=26$, then by Art. 7, we find $x=1+3 w$, and $y=7-5 w$, and by substituting these values in either of the equations, we find $z=1+8 w$.

By taking $w=0$, we find $x=1, y=7$, and $z=1$.
" " $\quad x=1$, we find $x=4, y=2$, and $z=9$, which are the only values.
2. Given $x-2 y+z=5\}$ to find the values of x, y, and z. $2 x+y-z=7\}$

$$
\text { Ans. } \begin{aligned}
x & =5,6,7, \\
y & =3,6,9, \\
z & =6,11,16, \& c .
\end{aligned}
$$

3. Given $2 x+5 y+3 z=51\}$ to find all the integral values of $10 x+3 y+2 z=120\} x, y$, and z.

$$
\text { Ans. } x=10, y=2, \text { and } z=7 .
$$

Art. 1B. Problem V. To find the least whole number, which being divided by given numbers, shall leave given remainders.

Let x represent the required number ; $u, b, c, \& c$., the given divisors; and $f, g, h, \& c$., the respective remainders. Then, by subtracting each of the remainders from x, and dividing by a, b, c $\& c$. , we have $\frac{x-f}{a}, \frac{x-g}{b}, \frac{x-h}{c}, \& c$., where it is required to find suc. a a velue of x, that, each of these expressions shall be whole numbere.
Let $\frac{x-f}{a}=p$, then $x=a p+f$; substituting this value of x in the second ϵ xpression, we have $\frac{a p+f-g}{b}$, in which it is required to find such a value of p as will render the expression a whole number. This may be done as in Prob. 1, Art. 7.

Having found a value of p, substitute it in the expression $a p+$ 27

Now if we divide k by a, and call the quotient q, and the re. mainder r, we shall have $\frac{y+k}{a}=q+\frac{y+r}{a}$, or $\frac{y-k}{a}=-q+\frac{y-\eta}{a}$, which are evidently whole numbers when $\frac{y+r}{a}$, or $\frac{y-r}{a}$ are whole numbers. Now let $\frac{y \dashv-r}{a}=w$, a whole number; then

$$
y=a w-r \text {, where } w \text { may be any whe!e }
$$

number that will render y positive. In a similar maumer, if r is negative, we find $y=a w+r$.

It is evident that the same general method may be applied to find the value of y in the equation $a x+b y=c$.

Since the subtraction of fractions does not produce any change n the common denominator, this may be omitted in the operation, and we may proceed according to the following Rule. - Reduce the equation to the form $x=$ by $+c$; perform the d vision of by $+c$ by a, and call the remainder $b^{\prime} y+c^{\prime}$.
Take the difference between ay and that multiple of $b^{\prime} y+c^{\prime}$ in which the multiple of b'y is the nearest to ay, and call the remainder $b^{\prime \prime} y+c^{\prime \prime}$.
Again, take the difference between $b^{\prime} y+c^{\prime}$, and that multiple of $b^{\prime \prime} y+c^{\prime \prime}$, in which the multiple of $b^{\prime \prime} y$ is the nearest to $b^{\prime} y$. And so on, till we get a remainder of the form $y+k$, or $y-k$. Lastly divide k by a and call the remainder r; then $y=a w-r$, or $a w+r$, according as k is plus or minus; and w may be any whole number that will render y positive.

Having the value of y, the general value of x is obtained by substituting the value of y in the given equation.

When the given equation is of the form $a x+b y=c$, the value of y is found on the same principles, except that it may be necessary to add instead of subtracting, to reduce the coëfficient of y.

The preceding rule depends on the principle that ihe sum or difference of two whole numbers is a whole number; and that any multiple of a whole number is also a whole number.

EXAMPLES.

1. Given $7 x-12 y=15$, to find x and y in positive whele num bers.

$$
\text { Here } x=\frac{12 y+15}{7}=y+2+\frac{5 y+1}{7} \text {, and } a=7 \text {. }
$$

$$
\begin{aligned}
& 7 y=a y \\
& \frac{5 y+1}{}=b^{\prime} y+c^{\prime}, \text { and the multiple }=1, \\
& \frac{2 y-1}{4 y-2}=b^{\prime \prime} y+c^{\prime \prime}, \\
& \frac{5 y+1}{y+3}=b^{\prime} y+p+c^{\prime \prime}, \text { where } p=2 . \\
& \frac{y+3}{7}=w, \text { and } y=7 \cdot w-3, \\
& x=\frac{12(7 w-3)+15}{7}=12 w-3 .
\end{aligned}
$$

Let $\quad w=1,2,3, \& c$.
Then $x=9,21,33, \& c$.,
and $y=4,11,18, \& c$., where it is obvious the namber of values of x and y are unlimited.
2. Given $7 x+11 y=47$, to find x and y in positive whole numbers.

Here $x=\frac{47-11 y}{7}=0-y+\frac{5-4 y}{7}$, and $a=7$.

$$
\begin{aligned}
& 5-4 y=b^{\prime} y+c^{\prime}, \\
& 10-8 y=p b^{\prime} y+p c^{\prime}, \\
& \frac{7 y}{10-a y}, \\
& \frac{10-y}{7}=1+\frac{3-y}{7} ; \\
& \frac{3-y}{7}=w, \therefore y=3-7 w ;
\end{aligned}
$$

$$
x=\frac{47-11(3-7 w)}{7}=2+11 w
$$

Let $w=0$, then $x=2$, and $y=3$, the only values.
3. How can 78 francs be paid with pieces of 5 francs and of 3 francs, and in how many ways ?

Let $x=$ the number of 5 franc pieces, and $y=$ the number of 3 franc pieces.

Then $5 x+3 y=78$,

$$
\begin{gathered}
x=\frac{78-3 y}{5}=15+\frac{3-3 y}{5}, \\
3-3 y=b^{\prime} y+c^{\prime},
\end{gathered}
$$

? Find two numbers whose sum and product are equal. $4 n s . a$ and $\frac{a}{a-1}$, where a may be any nunber whatever.
4. Find the number of solutions in the equation $9 \dot{x}-+139$ $=2000$ Ans. 17.
5. What formula gives numbers which, when divided by 3,4 , $\mathbf{5}$, respeetively, leaves the remainders $: 2,3,4$?

Ans. $x=60 p-1$.
6. Divide 1591 into two such parts that the one may be divisi ble by 23 , and the other by 34 .

Ans. 1081 , and 510 ; or 599 , and 1292 .
7. Into hov many pairs of numbers may 350 be divided, such that one number, when divided by $\overline{5}$, shall leave a remainder 3 , and if 5 be taken from the other number it shall be a multiple of 7? Ans. 10, one of them beng 23, 327 .
8. Required the least number which is divisible by 5 and 7, but leaves 1 when divided by 6 . Ans. -75 .
9. Divide 100 into three such parts that the first may be divisible by 13 , the second by 15 , and the third by $: 7$.

$$
A \cdots s .13,60,27 .
$$

10. A man buys oxen and horses for $\$ 1000$, he gives $\$ 19$ for each ox, and 9 for each horse. How many did he buy?

Ans. 4.5 oxen, and 5 horses; or 16 oxen, and 24 horses.
11. Divide the fraction $\frac{118}{9} 8$ into two others whose denominators shall be 9 and 11 . Ans. $\frac{5}{9}$ and T_{1}^{\top}.

Sugaestion. - Let x and y represent the numerators of the fractions, then $\frac{x}{9}+-\frac{y}{11}=\frac{118}{99}$, or $11 x+9 y=118$, whence $x=9 p-4$, and $y=18-11 p$.
12. Find three fractions, whose sum is ${ }_{3}^{661} 5$, and whose denominators are 5,7 , and 11 . Ans. $\frac{\stackrel{3}{3}}{3}, \frac{1}{\frac{1}{2}}, \frac{4}{1}$.
13. Find the least number which, being divided by $2 \mathbb{2}, 19$, and 15 , shall leave respectively the remainders 19,15 , and 11 .

Ans. 7691.
14. Divide $\supseteq 00$ into two sueh parts, that if one of them be di, vided by 6 , and the other by 11 , the respective remainders may be 5 und 4.

Sugerstion. Let x and y denote the quotionts, then the parts will be $6 x+5$, and $11 y+4$; and $6 x+11 y=191$.

Ans. 185 and 15, 119 and 81 , or 53 and 147.
I5. In what year of the Christian era, was the solar cycle 8, the lunar cycle 10, and the Roman Indiction 10? Ans. 156 ti.
16. A shepherd has a flock of sheep less than 200; wher he counts them by fours, sixes, or nines, be has 3 over each time; when be counts them by sevens or thirteens he has 1 over, and when he reckons them by elevens the remainder is 7. How many sheep has he?

Ans. 183.
17. A person wishes to purchase 20 animals for 20£. (400 shillings) ; viz. sheep at $31 \mathrm{~s} .$, pigs at 11 s. , and rabbits at 1 s . each ; in how many ways can he do it? Ans. Three ways; one of which is 12 sheep, 2 pigs, and 6 rabbits.
18. A wheel in 36 revolutions passes over 29 yards; and in x of these revolutions it describes z yards $+y$ feet +5 inches; required the values of x, y, and z. Ans. $x=13, y=1, z=10$.

DIOPHANTINE ANALYSIS.

Art. 14. The object of the Diophantine Analysis is, 'oo render algebraic expressions containing one or more unknown quantities, exact powers, such as squares or cubes; or, what amounts to the same, to find such vaiues of a quantity as shall render a radical expression depending on it rational.

Ex. Let it be required to find such values of x as shall render $4 x+5$ a square ; that is, so that $\sqrt{4 x+5}$ can be exactly determined. If we assume $4 x+5=m^{2}$, we find $x=\frac{m^{2}-5}{4}$, where m may be any number whose square is greater than 5 . If $m=3$ $x=1$; if $m=4, x=2 \frac{3}{4}$.

Remark.- The Dioplantine is properly a branch of Indeterminate Analysis; it derives its name from Diophantus of Alexandria, in Egypt who lived about A. D. 350 . In its full extent it is a compreheusive subject, and has occupied the attention of some of the greatest mathema. ticians. The following is designed to present merely the elementary principles of the subject. Those who desire a thorough knowledge of is are referred to " Euler's Algebra, with Lagrange's additions," "Barlow's Theory of Numbers," and "Legendre Theorie des Nowbres"

Art. 13 Probiem I.-To find such values of x as will render rational the expression

$$
\sqrt{a x^{2}+1 x+c}
$$

The solution of this problem assumes different forms, depending on the valucs of a, b, and c.

Art. 16. Case I.- When $a=0$, or when the expression becomes

$$
\sqrt{b x+c}
$$

Let $\sqrt{b x+c}=p$, where p may be any number whatever
then $b x+c=p^{2}$, and $x=\frac{p^{2}-c}{b}$.

E X A M DLE S.

1. Five times a certain number, diminished by 4 , makes a square, required the number.

Here $b=5, c=-4$, and $x=\frac{p^{2}+4}{5}$, where p may be $a n y$ number whatevur.

If $p=6$, then $x=8$; if $p=1$, then $x=1$; if $p=2$ then $x=1$. fi, and so on.
2. Find such values of x as will render the following expres. sions square numbers, and verify the resuli.

$$
5 x+3,5 x-3,10-3 x, 3 x+\frac{1}{4}
$$

Art. 17. Case II.- When $c=0$, or when the expression becowes

$$
\sqrt{a \cdot x^{2}+b x}
$$

Let $\sqrt{a x^{2}+b x}=p x$,
then $a x^{2}+b x=p^{2} x^{3}$, and $x=\frac{b}{p^{2}-a}$, where p may be sny number whatever.

EXAM1LES.

1. Find such a value of x as will render $5 x^{2}+8 x$ a square.

Here $a=-5, b=: 3$, and $x=\frac{8}{p^{2}-}$.

$$
\text { If } p=3, x=2 \text {, if } p=: 3 x=-8 \text {. }
$$

2. Divide tne number a into two parts, such that tbeir product shall be a square.

Let $x=$ one part, then $a-x=$ the other, and their product is $\alpha x-x^{2}$, which it is required to make a square.
Let $a x-x^{2}=p^{2} x^{2}$, whence $x=\frac{a}{p^{2}+1}, p$ being any number what. ever.

If $a=10$ let $p=2$, then $x=2$, and $a-x=8$.
3. Find such a value of x as shall render $7 x^{2}-15 x$ a square.

$$
x=\frac{15}{7-p^{2}} \text {; if } p=2, x=5
$$

4. Required a number such, that if its half be added to double its square, the result shall be a square.

$$
x=\frac{1}{2 p^{2}-4}, p \text { being any number. }
$$

Art. 18. Case III.- When a is a square, or when the expresswn is of the form $\sqrt{a^{2} x^{2}+b x+c}$.
Let $\sqrt{a^{2}} \overline{x^{2}+b x+c}=a x+p$,
then $a^{2} x^{2}+b x+c=a^{2} x^{2}+2 a p x+p^{2}$,

$$
\text { whence } x=\frac{c-p^{2}}{2 a p-b} \text {, or } \frac{p^{2}-c}{b-2 a p} \text {. }
$$

EXAMPLS.

1. Find such a value of x as will render $4 x^{2}+3 x-7$ a square.

Here $a=2, b=3$, and $c=-7$, whence $x=\frac{p^{2}+7}{3-4 p}$. Let $p=\frac{1}{2}$, then $x=7 \frac{1}{4}$.
2. Find a number, such that if it be increased by 2 and 5 separately, the product of the sums shall be a square.

Le ${ }^{2} x=$ the number, then it is required to make $(x-2)(x+5)$ - square. If $p=4, x=\frac{2}{5}$.
3. Fina a number, such that twice the number inc pased by 1 , multiplied by eight times the number diminished hy 2 , shall be a square.

Let $x=$ the number, then it is required to make $/ \Delta x+-1)(8 x-2)$ a cquare. If $P=\frac{1}{4}, x=1 \frac{1}{3}$.

Art. 19. Case IV.- When c is a square, or when the expression ss of the form $\sqrt{a x^{2}+b x+c^{2}}$.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
\sqrt{a x^{2}+b x+c^{2}} & =p x+c, \\
\text { then } \quad a x^{2}+b x+c^{2} & =p^{2} x^{2}+2 p c x+c^{2} . \\
\text { whence } x & =\frac{2 p c-b}{a-p^{2}} .
\end{aligned} .
\end{aligned}
$$

EXAMPLES.

1. Find such a value of x as shall render $3 x^{2}+5 x+9$ a square. If $p=1, x=\frac{1}{2}$.
2. Divide the number 16 into two parts, such that the sum of their squares shall be a square.

Let x and $16-x$ represent the parts, then it is required to make $2 x^{2}-32 x+256$ a square. If $p=3$, then the parts are $9 \frac{1}{7}$, and $6 \frac{5}{7}$.

Similarly, we may find two numbers whose difference shall be equal to a given number d, and the sum of whose squares shall be a square.

Art. Case V.- When neither a nor c are squares, sut : when $b^{2}-4 a c$ is a square.
Let r and r^{\prime} be the roots of the equation

$$
\begin{aligned}
x^{2}+{ }_{a}^{b} x+{ }_{a}^{c} & =0 ; \\
\therefore a x^{2}+b x+c & =a(x-r)(x-r) \\
\text { Let } \quad \sqrt{a x^{2}+b x+c} & =p\left(x-r^{\prime}\right), \\
\text { then } \quad a x^{2}+b x+c & =p^{2}\left(x-r^{\prime}\right)^{2} ; \\
\therefore a(x-r)\left(x-r^{\prime}\right) & =p^{2}\left(x-r^{\prime}\right)^{2}, \\
a(x-r) & =p^{2}\left(x-r^{\prime}\right) ; \\
\text { whence } x & =\frac{a r-p^{2} r^{\prime}}{a-p^{2}}
\end{aligned}
$$

Now the values of r and r are

$$
r=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \text { and } r=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

which will be rational when $b^{2}-4 a c$ is a square.

$$
\text { Let } l^{2}-4 a a^{\prime}=d^{2} \text {, then }
$$

$$
r=\frac{d-b}{2 a}, \text { and } r^{\prime}=-\frac{d-b}{2 a}
$$

\because by substitution $x=\frac{a d-a h+p^{2}(h+d)}{2 a\left(a-p^{2}\right)}$.

E XAMPLES.

1. Find such a value of x as will render the expressiua $6 x^{2}+13 x+6$ a square.

Here $b^{2}-4 a c=169-144=25$, and $d=5$.

$$
\therefore x=\frac{30-78+18 p^{2}}{72-12 p^{2}}=\frac{3 p^{2}-8}{12-2 p^{2}} ; \text { let } p=2, \text { then } x=1
$$

If $p=2 \frac{1}{3}, x=7 \frac{1}{2}$.
2. Find such a value of x as will render $2 x^{2}+10 x+12$ a square.

$$
\text { Ans. } x=\frac{3 p^{2}-4}{2-p^{2}} \text {; if } p=\frac{4}{3}, x=6 \text {; if } p=\frac{5}{4}, x=1_{7}^{1} \text {. }
$$

3. Find such a value of x as will render $3 x^{2}-8 x+5$ a square.

$$
\text { Ans. } x=\frac{5-p^{2}}{3-p^{2}} ; \text { if } p=1, x=2
$$

Art. 21. Case VI. When the proposed expression can be separated into two parts, one of which is a square, and the other the product of two factors.

If none of the preceding methods be applicable, still the solntion can be effected, if the proposed expression is equal to a square increased or diminished ly the product of two factors. The difficulty, however, consists in decomposing the expression, which can only be done by trial.

$$
\text { If } \begin{aligned}
a x^{2}+b x+c & =(d x+e)^{2}+(f x+g)(h x+k) \text {, let, the lattor } \\
& =\{d x+e+p(f x+g)\}^{2} . \quad \text { Squaring this, omitung }
\end{aligned}
$$

equar quantities on each side, and reducing

$$
x=\frac{p(2 e+p q)-k}{h-p(2 d+p f)} .
$$

:

EXAMPLES.

1. What value of x will render $5 x^{2}-1$ a square?

Bv trial we find $5 x^{2}-1=(2 x)^{2}+(x-1)(x+1)$.

Comparing this with the formula, we have $d=2, e=0, f=1$ $g=-1, h=1$, and $h=1$; whence $x=\frac{p^{2}+1}{p^{2}-4 p-1}$. If $p=1, x=\frac{1}{2}$; if $p=\frac{1}{2}, x=1$.
2. What value of x will render $2 x^{2}+8 x+7$ a square ?

Here $:^{2} x^{2}+8 x+7=(x+2)^{2}+(x+1)(x+3)$.
If $p=3, x=3$.
Art. :3:. When all the preceding methods fail, we may citen find, by trial, such a value r of x, as shall render $a x^{2}+b x+c$ a square. Having done this, substitute $y+r$ for x, and the resulting equation will be $a(y+r)^{2}+b(y+r)+c=a y^{2}+2 a r y+b y+a r^{2}+i m$ $+c$; but by hypothesis $a r^{2}+b r+c$ is a square ; calling this n^{2}, the expression becomes $a y^{2}+2 a r y+n^{2}$, which can now be rendered a square by Case 1V, Art. 19.

EXAMPLES.

1. Find such values of x as will render $6 x^{2}-10 x-3$ a square.

By trial, we find $x=?$ renders the expression a square. Let $x=y+2$; then by substitution, and reduction, the expression becomes $6 y^{2}+14 y+1$. Let this $=(p y+1)^{2}$, then $y=\frac{2 p-14}{6-p^{2}}$, and since $x=y+2$, we have $x=\frac{2 p^{2}-2 p+2}{p^{2}-6}$, from which, by give ing various values to f, we may find as many values of x as we please.
2. Find a general expression for the value of x that will render $10+8 x-2 x^{2}$ a square, which is a square when $x=\mathrm{I}$.

$$
\text { Ans. } x=\frac{8 p+4}{p^{2}+2}+1
$$

Problem II. To find such values of x as will render the expression $a x^{3}+b x^{2}+c x+d$ a square.

There are but two cases in which this problem admits of a direct solution: 1st, when the last two terms are wanting ; or $2 \mathrm{~d}_{1}$ when the last term is it square.
^RT. 23. Case I. When the expression is of the form $b x^{3}+b x^{2}$
Let $x x^{3}+b x^{2}=(p x)^{2}=p^{2} x^{4}$,
then $x=\frac{p^{2}-b}{a}$.

LXAMPLES.

1. Find x such that $2 x^{3}+3 x^{2}$ shall be a square. If $p=3, x=3$; if $p=5, x=11$.
2. Find a number, such that 5 times its cube, increased by 10 times its square, shall be a square. Ans. $x=3$.

3 Find a number, such that 3 times its cube, diminished by 10 times its square, shall be a square.

Ans. $x=5$.
Art. 24. Case II. When the expression is of the form

$$
a x^{3}+b x^{2}+c x+d^{2}
$$

Let $a x^{3}+\quad l x^{2}+c x+d^{2}=\left(\frac{c}{2 d} x+d\right)^{2}=\frac{c^{2}}{4 d^{2}} x^{2}+c x+d^{2}$;
whence $x=\frac{c^{2}-4 b d^{2}}{4 a d^{2}}$.

1. Find such a value of x as shall render $x^{3}-x^{2}+2 x+1$ a dquare. Here $\frac{c}{2 \bar{d}}=1$. Ans. $x=2$.
2. What value of x will render $3 x^{3}-5 x^{2}+6 x+6$ a square? Ans. $x=\frac{2}{1} \frac{2}{1}$.
3. What value of x will render $2 x^{3}-5 x^{2}+12 x+4$ a square? Ans. $x=7$.

Art. 25. If we know one value r of x, that will render $a x^{3}+b x^{2}+c x+d$ a square, we may find others as follows:

Let $a r^{3}+b r^{2}+c r+d=m^{2}$, and transform the equation $a x^{3}+b x^{2}$ $+c x+d=0$ into another whose roots shall he $x-r$, (Algebra, Art. 406) ; the transformed equation will be of the form

$$
a y^{3}+b^{\prime} y^{2}+c^{\prime} y+m^{2}=0
$$

We may then, by Art. 24, find a value q of y which will render this expression a square, then the general value of x will be $x=q+r$.

Ex. Find such a value of x, other than 2, as will render $x^{3}-x^{2}+2 x+1$ a square.

By aurstit ang $y+2$ for x, the resulting equation is

$$
y^{3}+5 y^{2}+10 y+9
$$

By assuming this equal to $\left(\frac{5}{3} y+3\right)^{2}$, and reducing, we find

$$
y=-\frac{20}{4} \quad \therefore x=-\frac{20}{9}+2=-\frac{2}{9} .
$$

Problem III. Tó find such values of x as shall iender $a x^{4}+l x^{3}+c x^{2}+d x+e$ a square.
Art. 26. Case I. When the first term only is a square, that is, to make $\quad a^{2} x^{1}+b x^{3}+c x^{2}+d x+e$ a square.

Let $a^{2} x^{4}+b x^{3}+c x^{2}+d x+e=(a x+m x+n)^{2}=a^{2} x^{4}+2 a m x^{3}-1$ $\left(m^{2}+2 n n\right) x^{2}+2 m n x+n^{2}$.
In order that the first three terms on each side shall be tho same, we must make

$$
\left.\begin{array}{l}
b=2 a m \\
c=m^{2}+2 a n
\end{array}\right\} \text { whence }\left\{\begin{array}{l}
m=\frac{b}{2 a} \\
n=\frac{c-m^{2}}{2 a}=\frac{4 a^{2} c-b^{2}}{\curlyvee a^{3}} ;
\end{array}\right.
$$

u is gives $d x+e=2 m n x+n^{2}$, and $x=\frac{n^{2}-e}{d-2 m n}$.

EXAMESFS.

1. What value of x will render $x^{4}-3 x+2$ a square ?

$$
\text { Ans. } x=\frac{2}{3} \text {. }
$$

2. Required a value of x, such that the expression $4 x^{4}+4 x^{s}$ $+4 x^{2}+2 x-6$ may be a square. Ans. $x=13 \frac{1}{3}$.

Art. 27. Case II. When the last term only is a square, that is, so make $a x^{4}+b x^{3}+c x^{2}+d x+c^{2}$ a square.

Let $x=\frac{1}{y}$, then the exprossion becomes

$$
\frac{a+b y+c y^{2}+d y^{3}+e^{2} y^{4}}{y^{4}}
$$

The numerator of this expression may be rendered a square by the preceding article, and the denominator is already a square, therefore the whole will be a square.

EXAMPLES.

1. What value of x will render $2 x^{4}-3 x^{3}+1$ a square?

Here it is required to make $y^{4}-3 y+3$ a square. $y=3.8 x=3$.
When the first and last terms are both squares, the problem may be solved by etther of the preceding cases.

1. What value of x will render $x^{4}-6 x^{3}+4 x^{2}-24 x+16$ a square?

Ans. $x=\frac{1}{4}$.

Art. 23. We might now proceed to consider hacw an expres sion of the lorm $a x^{4}+b x^{3}+c x^{2}+d x+e$ can be rendered a square.

The genorit principle is, to assume the given expression equal to such a ".antity, that, after squaring, all the terms may disappear, or be made to do so, except those containing two consecutive powers of x; as the value of this quantity can then be obtained in a rational form. The terms to be dostroyed may be at the beginning of the given expression, or at its end, or both, according to its nature.

Ex. 1. What value of x will render $4 x^{4}+12 x^{3}-3 x^{2}-2 x+1$ a square.

Assume this equal to $\left(2 x^{2}+p x+q\right)^{2}$, then squaring and reducing, we have $12 x^{3}-3 x^{2}-2 x+1=4 p x^{3}+\left(p^{2}+4 q\right) x^{2}+2 p q x+q^{2}$.

Equating the coëfficients 12 and $4 p$, and also - 3 and $p^{2}+4 q$, we get $p=3$, and $q=-3$; this reduces the equation to $-2 x+1$ $=2 p q x+q^{2}=-18 x+9$; whence $x=1$.

When we know one value of the unknown quantity that satisfies the conditions other values may be found as in Art. 26.

Ex. What other value of x, besides 1 , will render $3 x^{4}-2$ a square?

By substituting $y+1$ for x, we get $3 y^{4}+12 y^{3}+18 y^{2}+12 y+1$.
Since the last term is a square, assume this equal to $\left(p y^{2}+q y+1\right)^{2}$, then the last three terms in each member will disappear by taking $p=-9$, and $q=6$; whence $y=\frac{\ddot{1}}{13}$, and therefore $x=\frac{3}{1} \frac{3}{3}$.

By assuming $x=y+\frac{33}{13}$, and performing a similar process, we can find another vaiue of x, and so on.

ART. 29. Quantities of the form $a x^{3}+b x^{2}+c x+d$, can be rendered cubes on principles exactly similar to those that have been employed in rendering quantities squares. Thus, if a be a culee, we may destroy the first and second terms; if d be a cube, the chird and fourth terms can be destroyed: if a and d be both cubes, we can destroy the first and last terms. When neither a nor d is a cube, if we can tind a value r of x, which being substituted for x, will render the expression a cube, we may substitute $y+r$ for x, and then obtain an expression which can be rendered a cube by the principles just explained. As an example let it he required to find a value of x which will make $2 x^{3}+3$ a cube.

Here we see that $x=-1$ satisfies the conditions; to find another value substitute $y-1$ for x, and the expression becomes $2 y^{3}-6 y^{2}+6 y+1$. Assume this equal to $(p y+1)^{3}$, and then by
taking $p=2$, to make the last two terms of each member disan pear, we get $y=-3$, therefore $x=-4$. By substituting $y-4$ for x, we might obtain another value, and so on.

EXAMPLES.

1. Find a value of x that will render $3 x^{3}+2 x+1$ a cube. Ans. $x=7 \frac{6}{3}$.
2. Find a value of x, besides $x=1$, that will render $2 x^{3}-4 x$ $+6 x+4$ a cube. Ans. $x=\frac{17}{5}$.
3. Find a value of x, besides $x=-1$, that will render $x^{2}+x+1$ a cube.

Ans. $x=-19$.

DOUBLEANDTRYPLEEQUALITIES.

Art. 30. Double, triple, or higher equalities, are problems in which two, three, or more functions of a quantity are to be made squares or cubes, for the same value of x. Thus, if it be required to find a value of x that shall render both the expressions, $a x+b$, and $c x+d$ squares, the problem presents a double equality.

In the following solutions, for the sake of brevity, the symbol \square is used to represent a square number.
Privciple - It is sometimes convenient to use the following principle:

If a square be multiplied by a square, the product witl be a square, or if a square be divided by a square, the quotient will be a square.

Art, 81. Case I.- To solve the double equality

$$
\begin{aligned}
& a x+b=\square, \\
& c x+d=\square .
\end{aligned}
$$

Let $a x+b==p^{2}$, and $c x+d=q^{2}$, then equating the two values of x, and reducing, we find

$$
c^{2} p^{2}=c a q^{2}-c a d+c^{2} b
$$

Since the left member is a \square, q must have such a value as to render the right member a \square, which may be ascertained by som ${ }^{\circ}$ of the preceding methods.

Ex. What value of x will render $x-1$ and $2 x-1$ both squares:

$$
\text { Ans. } x=\overline{5} \text {, or } x=\frac{6 \pi}{4}
$$

Alt Bre. Case II. - To solve the double equaitu.

$$
\begin{aligned}
& a x^{2}+b x=\square \\
& c x^{2}+d x=\square
\end{aligned}
$$

Let $x=\frac{1}{4}$ then we have

$$
\begin{aligned}
& \frac{1}{y^{2}}(a+b y)=\square \\
& \frac{1}{y^{2}}(c+d y)=\square
\end{aligned}
$$

Hence, by the principle, Art. 30 , it is only necessary to render $a+b y$, and $c+d y$ both squares, which belongs to the preceding. problem.

Art. 33. Case III. - To solve the double equality

$$
\begin{aligned}
& a x^{2}+b x+e=\square \\
& d x^{2}+e x+f=\square
\end{aligned}
$$

Here we must solve the equality $a x^{2}+b x+c=\square$, by methods already explained, and then substitute the value of x so found in the equality $d x^{2}+e x+f=\square$, which will rise to the fourth degree, and which must then be solved by methods explained in Art. 28.

Art. 34. Case IV.- To solve the triple equalify

$$
\begin{aligned}
& a x+b y=\square \\
& c x+d y=\square \\
& e x+f y=\square
\end{aligned}
$$

Put $a x+b y=t^{2}, c x+d y=u^{2}$, and $e x+f y=s^{2}$.
By eliminating y from the first two equations, and x from the same equations, we find $x=\frac{d t^{2}-\ln i^{2}}{a d-b c}$, and $y=\frac{a u^{2}-c t^{2}}{a d-b c}$; substituting these for x and y in the third equation ; putting $u=t z$. and dividing the expression by t^{2}, we have

$$
\frac{(a f-b c) z^{2}-(c f-d e)}{a d-b c}=\square
$$

When it is possible the value of $\%$ may be found by Problem 1, Articles 15 to 22.

Having the value of x, we may assume t of any convenient value, this will give the value of u; then by substitution, the values of x and y are easily obtained.

The preceding are the most general methods hitherto discovered. In the resolution of most problems, however, much will depend
an tine judgment and skill of the operator, and the most impir. tant and difficult problems are solved by methods for which no special rules can be given.

MISCELLANEOUS EXERCISES.

1. To divide a given square number, a^{2}, into two squares.

Let $x^{2}=$ one part, then $a^{2}-x^{2}=$ the other. Assume $a^{3}-z^{2}$ $=(a-v x)^{2}$, whence $x=\frac{2 a v}{v^{2}+1}$.
\therefore the parts are $\frac{a^{2}\left(v^{2}-1\right)^{2}}{\left(v^{2}+1\right)^{2}}$, and $\frac{4 a^{2} v^{2}}{\left(v^{2}+1\right)^{2}}$.
Suppose $a^{2}=100$, then if $v=2$, the parts are 36 and 64 , if $v=4$, the parts are $\frac{22500}{289}$, and $\frac{6400}{289}$, and so on.

By means of this formula we can divide a given square into any assigned number of squares, by first dividing it into two squares, and then subdividing one or both of these into others.

The solution of this problem gives the following equation ;

$$
a^{2}=\frac{a^{2}\left(v^{2}-1\right)^{2}}{\left(v^{2}+1\right)^{2}}+\frac{4 a^{2} v^{2}}{\left(v^{2}+1\right)^{2}} .
$$

Dividing both members by a^{2}, and multiplying by $\left(v^{2}+1\right)^{2}$ we have

$$
\left(v^{2}+1\right)^{2}=\left(v^{3}-1\right)^{2}+4 v^{2} ;
$$

Substituting $\frac{p}{q}$ for v, and multiplying both members by q^{4}, we get

$$
\left(p^{2}+q^{2}\right)^{2}=\left(p^{2}-q^{2}\right)^{2}+4 p^{2} q^{2} .
$$

Hence, the square of $p^{2}+q^{2}$ being equal to the sum of the squares of $p^{2}-q^{2}$ and $2 p q$, it follows (Legendre IV, 11,) that if $p^{2}+q^{2}$ be the hypothenuse of a right-angled plane triangle, $p^{2}-q^{2}$ and $: 2 p q$ will be its legs; this gives the lollowing useful
Rule.- To find the sides of a righl-anyled triangle in whole numbers, tide two unrqual whole numbers; then the sum of their squares, the difference of their squares, and twice their product, will be the three sides.

Thus, by taking 1 and ${ }^{2}$, we find the sides to be 5,3 , and 4 ; if we take 1 and 3 the sides will be 10,8 , and 6 .
2. To divide a number which is the sum of two known squares, a^{2} and b^{2}, into two other squares.

Let x^{2} be one of the parts, then $a^{2}+b^{2}-x^{2}=\square$. But one palue of x is b or a; therefore, substitute $y+b$ (Art. 22,) for x,
and we get $a^{2}-y^{2}-2 l y=\square$; assume this equal to $(a-v y)^{2}$, and we find $y=\frac{2 a v-y b}{v^{2}+1}, \therefore x=y+b=\frac{h\left(v^{2}-1\right)+2 a v}{v^{2}+1}$.

Example. Let the given number be $185=4^{2}+13^{2}$. Here $a=4$, and $b=13$; let $v=2$, then $x=11$, and $x^{2}=121$, and $180-121=64=8^{2}$. If $v=4$ the parts are $\left(\frac{2127}{17}\right)^{2}$, and $\left(\frac{1}{1} \frac{4}{7}\right)^{2}$.
3. To find three square numbers in arithmetical progression.

Assume $(x-y)^{2}, x^{2}+y^{2}$, and $(x+y)^{2}$ for the three numbers, whose common difference is $2 x y$, and of which the first and third are already squares. It only remains then to make $x^{2}+y^{2}$ a square, which may be done in the manner explained in the latter part of the solution to Ex. 1. Thus, let the two unequal numbers be 2 and 1 , then x, (the diff. of their squares, $=3$, and η, (twice their product, $=4$. Hence $(x-y)^{2}, x^{2}+y^{2}$, and $(x+y)^{2}$ are 1 , 25 , and 49.
4. To find any assigned number (n) of squares whose sum shall be a square.

By assuming as the required squares a^{2}, l^{2}, c^{2}. . and x^{2}, where $a^{2}, b^{2}, \& c$., are numbers assumed at pleasure, it only remains to find such a value of x as shall make $a^{2}+1^{2}+c^{2}$. . $+x^{2}$ a square, which may be done by assuming it equal to $(x+p)^{2}$, and resolving the equation so found for x.
5. Find two whole numbers, such that their difference shall be a square, and the sum of their squares a cube.

Assume $4 x^{2}$ and $3 x^{2}$ for the numbers ; then $4 x^{2}-3 x^{2}=x^{2}=\square$, and it remains to make $\left(4 x^{2}\right)^{2}+\left(3 x^{2}\right)^{2}=25 x^{4}$ a cube.

Let $25 x^{4}=a^{3} x^{3}$, then $x=\frac{1}{2} \frac{1}{a} a^{3}$. Let $a=5$, then $x=5$, and the numbers are 100 and 75 .
6. To find three numbers in arithmetical progression, such that the sum of every two of them may be a square.

Let $x-y, x$, and $x+y$ represent the numbers, then $2 x, 2 x-y$, and $i x+y$ must be squares.

Assume $2 x=r^{2}+s^{2}$, and $y=2 r s$, then the second and third will be squares, and it only remains to make $r^{2}+s^{2}$ a square, which will be accomplished by making $r=m^{2}-n^{2}$, and $s=2 m n$. This gives $2 x=\left(m^{2}+n^{2}\right)^{2}$, and the three numbers are $\frac{1}{2}\left(n^{2}+n^{2}\right)^{2}$ $--4 m \pi\left(m^{2}-n^{2}\right), \frac{1}{2}\left(m^{2}+n^{2}\right)^{2}$, and $\frac{1}{2}\left(m^{2}+n^{2}\right)^{2}-4 m u\left(m^{2}-n^{2}\right)$. If $m=9$ and $n=1$, the numbers are 482,3362 , and 6242 .

This question may also be readily solved by assuming the three numbers $2 x^{2}-y, 2 x^{2}$, and $2 x^{2}+y$, and then putting $y=4 x-1$
7. To divide universally any given whole number, N , into as many different square numbers as it contains units.

Let $a x-1, b x-1, c x-1, \& c$., continued to N terms, represent a series of routs, the sum of whose squares is to be N. Let each of these be squared separately, and put the sum of all the coefficients of x^{2}, that is, $a^{2}+b^{2}+c^{2}+, \& c$., $=m$, and those of x, that is, twice the sum of $a, b, c, \& c .,=n$, we shall then have $m x^{2}-n x$ $+\mathrm{N}=\mathrm{N}$; from which $x=\frac{n}{m}$. To apply this to a particular question let it be required to divide the number 4 into 4 square numbers.

Let a, b, c, and $d=2,3,4$, and 5 , then $m=a^{2}+b^{2}+c^{2}+d^{2}$ $=4+9+16+25=54 ; n=2 a+2 b+2 c+2 d=4+6+8+10=28$
$\therefore \frac{n}{m}=\frac{2}{3} \frac{8}{4}=\frac{1}{2} \frac{4}{7}$, and $a x-1, b x-1, c x-1$, and $d x-1=\frac{1}{2} \frac{1}{7}, \frac{1}{2}, \frac{2}{2} \frac{9}{7}$, and $\frac{4}{2} \frac{3}{7}$, and the numbers are $\left(\frac{1}{2} \frac{1}{7}\right)^{2},\left(\frac{1}{2} \frac{5}{7}\right)^{2},\left(\frac{2}{2} \frac{9}{7}\right)^{2}$, and $\left(\frac{4}{2} \frac{3}{7}\right)^{2}$, or

8. Find three cube numbers, whose sum shall be a cube.

Put x^{3}, y^{3}, and z^{3} for the three cubes, and let their sum

$$
\begin{gathered}
=(x+z)^{3}=x^{3}+3 x^{2} z+3 x z^{2}+z^{3}, \\
\therefore y^{3}=3 x^{2} z+3 x z^{2} .
\end{gathered}
$$

Put $x=p z$, then $y^{3}=3 p^{2} z^{3}+3 p z^{3}=z^{3}\left(3 p^{2}+3 p\right)$.
It is now required to make $3 p^{2}+3 p$ a cube, which it is when $p=\frac{1}{3}$; consequently if we make $z=8 . p z=1$, and $y=6 ; \therefore$ the three cubes are $1^{3}, 6^{3}$, and 8^{3}, whose sum is 9^{3}. By making $z=$ any multiple of 8 , we may obtain as many integral solutions as we please.

The learner should observe that it is generally important to assume the numbers so as to satisfy as many of the conditions as possible.
9. Find two numbers, such that their sum and difference shall be squares Ans. $v^{2}+1$, and $2 v$, or 5 and 4 , \&e.e.
10. Find two numbers, such that if cach be added to the square of the other, the sum shall be a square. Ans. $\frac{4\left(r^{2}+1\right)}{80+1}$, and $\frac{n^{2}-8 v}{v+1}$, which are found by assuming $4 x$ and $x-1$ for the numbers
11. Find two numbers, such that the difference of their cubes may be a square number. Ans. $\frac{2 v+3}{v^{2}-3}$, and $\frac{v^{2}+2 v}{v^{2}-3}$.
12. Find a number, such that the sum of its square and cube may be a square. Ans. $v^{2}-1$, or 3, 8, \&c.
13. Find two numbers, such that if to each of them, and to their sum and difference 1 be added, each of the four sums may be a square.

Ans. 168, and 120.
Let $x^{2}+2 x$ and $x^{2}-2 x$ represent the numbers.

$$
\text { 14. Render } 2 x^{2}-2 \text { a square. Ans. } x=\frac{v^{2}+2}{22^{2}-2} \text {. }
$$

First assume $x=y+1$.
15. Find two numbers, such that the difference of their squares may be a cube, and the difference of their cubes a square.

$$
\text { Ans. } 10 v^{6} \text {, and } 6 v^{6}
$$

Assume the numbers equal to $x^{3}+2 a^{6}$, and $x^{3}-2 a^{6}$.
16. Find a number, such that if 1 be added to its double and triple, each of the results may be a square.

Let $2 x^{2}+2 x$ represent the number, then $x=\frac{2 v+6}{v^{2}-5}$.

$$
\text { Ans. } 40,3960, \& c .
$$

17. Required three numbers, such that the sum of all three, and the sum of every two of them may be a square number.

Assume $4 x, x^{2}-4 x$, and $2 x+1$ for the three numbers.
Ans. $\frac{2}{3}\left(v^{2}-1\right), \frac{1}{3} \overline{6}\left(v^{2}-1\right)^{2}-\frac{2}{3}\left(v^{2}-1\right)$, and $\frac{1}{3}\left(v^{2}+2\right)$.
18. Find two numbers, such that their difference may be equal to the difference of their squares, and that the sum of their
equares may be a square.

$$
\text { Ans. } \frac{2 v-2}{v^{2}-2} \text { and } \frac{v^{2}-2 v}{v^{2}-2}
$$

19. Find two square numbers, whose sum shall be equal to their product. Ans. $\frac{\left(v^{2}+1\right)^{2}}{\left(v^{2}-1\right)^{2}}$, and $\frac{\left(v^{2}+1\right)^{2}}{4 v^{2}}$, or $\frac{25}{9}$, and $\frac{25}{1} \frac{5}{6}$, \&c.
20. To divide a number which is the sum of three square num. bers in arithmetical progression, into three other squares whick shall also be in arithmetical progression.

Ans. The numbers will be found by dividing one-third of the geiven number into two squares, a^{2} and b^{2}, by Example 1, and taking $(a-b)^{2}, a^{2}+b^{2}$, and $(a+b)^{2}$ as the required numbers.
21. To find thiree whole numbers in arithmetical progression whase common difference shall be a cube, the sum of any two diminished by the third a square, and the sum of the roots of the required squares a square.

$$
\text { Ans. } 28980713761144832 \text {, } \begin{array}{r}
51885988002201600, \\
76791262243258368 .
\end{array}
$$

properties of numbers.

Art. 35. Definitions. Even numbers are those which are divisible by 2.

Odd numbers are those which, when divided by 2, leave a remainder 1.

An even number is represented by the formula $2 n$, and an odd number by the formula $2 n+1$.

A prime number has no divisor except itself and unity.
Numbers are prime to each other when they have no common divisor, except unity.

Art. 36. If $\frac{M}{\bar{N}}$ be a fraction, and if d be the greatest common divisor of \mathbf{M} and N , so that $\mathrm{M}=a d$, and $\mathrm{N}=l d$, then ${ }_{\mathrm{N}}^{\mathrm{M}}=\frac{a}{b}$; and $\frac{a}{\dot{b}}$ is the fraction $\frac{\mathrm{M}}{\overline{\mathrm{N}}}$ in its lowest terms, and a is prime to b.
There can be no other fraction $\frac{p}{q}$ when p is prime to q, which shall be equal to $\frac{\mathrm{M}}{\mathrm{N}}$; for if so, M and N would have twa greatest common measures, which is absurd.

Art. 3\%. I. Every numher N may be expressed by the formula

$$
\mathrm{N}=q n+r .
$$

For if the number N be divided hy q, and if n be the quotient and r the remainder, then by the principles of division,

$$
\mathbf{N}=q n+r ;
$$

q is called the modulus, and by giving different values to q, differeut. forms of numbers may be obtained. It is evident that r can nut exceed $q-1$.

Art. 88. II. Every number is of one of the forms, $3 n$, on $3 n \pm 1$.

Comparing this with the general formula $\mathrm{N}=q n+r$, we have

$$
\begin{gathered}
\qquad=3, r=0,1 \text {, or } 2 \\
\therefore \mathrm{~N}=3 n \text {, or } 3 n+1 \text {, or } 3 n+2 ; \\
\text { but } 3 n+2=3 n+3-1=3(n+1)-1=3 n-1 . \\
\therefore \text { every number is one of the forms } 3 n \text {, or } 3 n \pm 1 .
\end{gathered}
$$

Art. 39. IlI. Every square number is of one of the forms $4 n$. or $4 n+1$.

Every number is either $2 n$, or $2 n+1$.
If $\mathrm{N}=2 n ; \mathrm{N}^{2}=4 n^{2}=4 n^{\prime}$, if $n^{2}=n^{\prime}$.
If $\mathrm{N}=2 n+1 ; \mathrm{N}^{2}=4 n^{2}+4 n+1=4 n(n+1)+1=4 n^{\prime}+1$, if $n(n+1)=n^{\prime}$.

Hence, \mathbf{N}^{2} is of the form $4 n$, or $4 \eta+1$; that is, every. square number is either divisible by 4 , ar, when divided by 4 , leaves anity for its remainder.

Arc. 40. IV. The difference between the squares of any two odd numbers is divisible by 8 .

Let M and N be the numbers, M being.$\rightarrow \mathrm{N}$.
Also, let $\mathbf{M}=2 m+1$, and $\mathbf{N}=2 n+1$,
$\therefore \mathbf{M}^{2}-\mathbf{N}^{2}=4\left(m^{2}-n^{2}\right)+4(m-n)$

$$
=4(m+n)(m-n)+4(m-n)=4(m-n)(m+n+1),
$$

which is evidently divisible by 4 ; and since whatover values be given to m and n, either $m-n$ or $m+n+1$ is an even number; $\therefore \mathrm{M}^{2}-\mathrm{N}^{2}$ is divisible by 4×2 or 8 .

Art. 41. V. The product of three successive numbers is divisible by 2×3, or

$$
\frac{n(n+1)(n+2)}{2 \times 3} \text { is an integer. }
$$

For one of the first two factors must be an even number, and one of the three must be of the form $3 m$, or is divisible by 3 ; \therefore since 2 and 3 are prime factors, $n(n+1)(n+2)$ must be divisible by 2 and 3 .

Similarly, it may be proved that the product of four supecossive numbers is divisible by $2 \times 3 \times 4$; that the product of five sus.cessive numbers is divisible by ${ }^{1} \times 3 \times 4 \times 5$, and so on.

Art. VI. The difference between a number and its cute is divisithe by 6 .

For $n^{3}-n=n\left(n^{2}-1\right)=(n-1) n(n+1)$, which, being the product of 3 successive numbers, is divisible by 2×3, or 6 .

Hence $\frac{n^{3}}{6}$ and $\frac{n}{6}$ leave the same remainder.
Art. 13. VII. If n be a whole number, $n\left(n^{2}-1\right)\left(n^{2}-4\right)$ is divisible by 120 .
For $\begin{aligned} n\left(n^{2}-1\right)\left(n^{2}-4\right) & =n(n-1)(n+1)(n-2)(n+2) \\ & =(n-2)(n-1) n(n+1)(n+2),\end{aligned}$
which, being the product of 5 consecutive numbers, is divisible by $2 \times 3 \times 4 \times 5$, or 120 , (Art. 41).

Art. 4!. VIII. Every square number is either $5 n$, or $5 n \pm \mathrm{I}$.
Every number is of one of the forms $5 n, 5 n+1,5 n+2,5 n+3$, $5 n+4$; all of which are included in the forms $5 n, 5 n \pm 1,5 n \pm 2$, since $5 n+3=5(n+1)-2=5 n^{\prime}-2$, and $5 n+4=5(n+1)-1$ $=\overline{=} n^{\prime}-1$.

But $(5 n)^{2}=5\left(5 n^{2}\right)=5 n^{\prime}$, which is of the form $5 n$;
$(5 n \pm 1)^{2}=25 n^{2} \pm 10 n+1=5\left(5 n^{2} \pm 2 n\right)+1$, which is of the form $5 n+1$;
$(5 n \pm 2)^{2}=25 n^{2} \pm 20 n+4=5\left(5 n^{2} \pm 4 n+1\right)-1$, which is of the form $5 n-1$.
\therefore every square is of one of the forms $5 n$, or $5 n \pm \mathbf{1}$.
Art. 45. IX. Every cube number is either $7 n$, or $7 n \pm \mathbf{1}$.
For every number is of one of the forms $7^{7}, 7 n+1{ }^{7} \eta+2$, $7 n+3,7 n+4,7 n+5,7 n+6$. But $7 n+4=7 n+7-3,7 n+5$ $=7 n+7-2,7 n+6=7 n+7-1$, hence every number is $\mathrm{e}^{i \omega_{\mathrm{k}} \text { er }}$ $7 n, 7 n \pm 1,7 n \pm 2$, or $7 n \pm 3$;

$$
\therefore \mathrm{N}^{3} \text { is }(7 n)^{3},(7 n \pm 1)^{3},(7 n \pm 2)^{3} \text {, or }(7 n \pm 3)^{3} \text {, of whiz } h
$$

the first two are of the required forms.

$$
\text { But } \begin{aligned}
(7 n \pm 2)^{3} & =(7 n)^{3} \pm 6(7 n)^{2}+12(7 n) \pm 8=7 m \pm 8 \\
& =7(m+1)+1==^{\prime} n^{\prime}+1 ; \\
(7 n \pm 3)^{3} & =(7 n)^{3} \pm 9(7 n)^{2}+27(i n) \pm 27=7 m \pm 27 \\
& =7(m \pm 4)-1=7 n^{\prime}-1 ;
\end{aligned}
$$

\therefore every cube number is either $7 n$, or $7 n \pm 1$.
Art. L6. X. Every prime number greater than 3 is of tho form $6 n \pm 1$.

For every number is of one of the forms $6 n, 6 n-1-6 n+2$
$6 n+3,6 n+4,6 n+5$, of which the first, third, fourth, and fifth are divisible by 2 ; if therefore the number be a prime number it must be one of the forms $6 n+1$, or $6 n+5$; but $6 n+5=6 n+6$ $-1=6 n^{\prime}-1 ; \therefore$ every prime number greater than 3 , is $6 n \pm \mathbf{1}$

Cor. Hence, if any prime number is increased and diminished by unity, either the sum or the difference is divisible by 6. Thus, $29+1=30 ; 37-1=36$.

Art. 4\%. XI. If m be a prime number, greater than 3, $m^{3}-\mathbf{l}$ $4 s$ divisible by 24 .

$$
\text { Let } \begin{aligned}
m=6 n \pm 1 & ; m^{2}=36 n^{2} \pm 12 n+1 ; \\
& \therefore m^{2}-1=12 n(3 n \pm 1),
\end{aligned}
$$

and since either n or $3 n \pm 1$ must be an even number, and therefore divisible by 2 , therefore $12 n(3 n \pm 1)$ is divisible by 12×2 or 24; $\therefore m^{2}-1$ is divisible by 24 .

Art. 48. XII. Every number is a prime which is not divisible by a number less than its square root.

For every number N which is not a prime is composed of two factors, as a and b, so that $\mathrm{N}=a b$.

Now if $a=b, \mathrm{~N}$ is a square number, and $a=\sqrt{\mathrm{N}}$; but if a do not $=b$, and $a>b$, then $a>\sqrt{\mathbf{N}}$ and $b<\sqrt{\mathbf{N}}$, that is, b a divisor of N is less than $<\sqrt{\mathrm{N}}$; and this is obviously true for every number not a prime; . . if a number is not divisible by a number less than its square root, it must be a prime.

Ex. 97 is a prime number, since it is not divisible by any number less than $\sqrt{97}$ or 10 .

The following formulas contain a great number of primes bv making $x=0,1,2,3, \& c$.

The first 40 terms of $x^{2}+x+41$ are primes, the first 29 terms of $2 x^{2}+29$ are primes, and the first 31 terms of $2^{x}+1$ are primes.

Art. 19. XIII. If N be any number having prime factors, $a_{\text {, }}$ $b, c, \& f c$, and a is taken as a factor m times, b as a factor n times, and c as a factor r times, then $\mathrm{N}=a^{m} \cdot b^{n} \cdot c^{r}$.

For $\mathbf{N}=a$ taken m time $\times b$ taken n times $\times c$ taken r times, $=a^{m} \times b^{n} \times a^{n}$,
Ex. Let $N=360=2 \times 2 \times 2 \times 3 \times 3 \times 5=2{ }^{3} \times 3^{2} \times 5^{\prime}$.

Art. 50. XIV. To find the number of divisors of a given number.

Let \mathbf{N}, the given number, $=a^{m} \cdot b^{n} \cdot c^{r}, \& \mathrm{c}$.
Then it is evident that N will be divisible by

$$
\begin{aligned}
& 1, a, a^{2}, a^{3}, \& c a^{m} ; \\
& 1, b, b^{2}, b^{3}, \& c b^{n} ; \\
& 1, c, c^{2}, c^{3}, \& c c^{n} ;
\end{aligned}
$$

and also by every possible combination of the products of these terms; that is, by every term of the product
$\left(1+a+a^{2}, \& c \cdot,+a^{m}\right)\left(1+b+b^{2}, \& c .,+b^{n}\right)\left(1+c+c^{2}, \& c .,+c^{\prime}\right) \& \mathrm{c}$.
But the number of terms of this product, since no two of them can be the same, is

$$
(m+1)(n+1)(r+1), \& c ., \text { which is the numbe: }
$$ of divisors of N .

Observe that unity and N are included in the number of divisors.

Ex. Find how many numbers are there by which 360 is divisible.

$$
\begin{aligned}
& 360=2^{3} \times 3^{2} \times 5^{1} ; \\
\therefore \text { number of divisors } & =4 \times 3 \times 3, n=2, \text { and } r=1 ;
\end{aligned}
$$

Art. 51. XV. To find a number N that shall have a given num. ler of divisors.

Let d represent the given number of divisors, and resolve it into factors, as $d=t \times u \times v$. Take $m=t-1, n=u-1, r=v-1$ \&c., and let u, b, c be any prime numbers whatever, then $\mathbf{N}=a^{m} \cdot b^{n} \cdot c^{r}, \& c$. , as is evident from the preceding proposition

Ex. Find a number that shall have thirty d visors.
First, $30=2 \times 3 \times 5 ; \therefore m=2-1=1, n=3-2=1$

$$
r=5-1=4 ; \quad \mathrm{N}=a b^{2} c^{4} \text { is the required number }
$$

If $a=2, b=3, c=5$; then $\because \times 3^{2} \times 5^{4}=11250$.
If $a=5, b=3, c=2$; then $5 \times 3^{2} \times 2^{4}=720$.
If $a=5, l=2, c=3$; then $5 \times 2^{2} \times 3^{4}=1620$.
If $a=3, b=5, c=2$; then $3 \times 5^{2} \times 2^{4}=1200$.
Each of these numbers has thirty divisors, and in the same manner various other numbers might be found having the same property; by giving a, b, and c other prine values.

Art. 52. XVI. To find the sum of the divisors of

$$
\mathrm{N}=a^{m} \cdot b^{n} \cdot c^{r} .
$$

Since every divisor of N is contained in the product, (Art. 50), $\left.1+a+a^{2}, \& c,+a^{m}\right)\left(1+b+b^{2}, \& c .,+b^{n}\right)\left(1+c+c^{2}, \& c,+c^{n}\right)$, and since by the rule for summing a geometrical series, (Alg. Art. 297),

$$
\begin{aligned}
& 1+a+a^{2} \ldots \ldots+a^{m}=\frac{a^{m}+1}{a-1} \\
& 1+b+b^{2} \ldots .+b^{n}=\frac{b^{n+1}-1}{b-1}, \& c .
\end{aligned}
$$

. . the sum must be $\left(\frac{a^{m+1}-1}{a-1}\right)\left(\frac{b^{n+1}-1}{b-1}\right)\left(\frac{c^{r-1}-1}{c-1}\right)$.
Ex. 1. Find the sum of all the divisors of 360 .

$$
\begin{aligned}
& 360=2^{3} \times 3^{2} \times 5 \text {; therefore, } \\
& \left(\frac{2^{4}-1}{2-1}\right)\left(\frac{3^{3}-1}{3-1}\right)\left(\frac{5^{2}-1}{5-1}\right)=15 \times 13 \times 6=1170 . \text { Ans. }
\end{aligned}
$$

Ex. 2. Find the sum of the divisors of 28 , the number itself being excluded.

Here $28=2 \times 2 \times 7=2^{2} \times 7 ; \therefore$ the sum of the divisors is

$$
\left(\frac{2^{3}-1}{2-1}\right)\left(\frac{7^{2}-1}{7-1}\right)=\frac{7 \times 48}{6}=56 ; \text { and rejecting }
$$

The number 28 itself, the required sum is

$$
56-28=28 .
$$

A perfect number is one which is equal to the sum of all its divisors (not including itself). Thus 28 , which is equal to $1+2+4+7+14$, the sum of its divisors, is a perfect number.

Other perfect numbers are 6, 496, and 8128; there are onlv eight perfect numbers known.

EXERCISES.

1. Prove tliat n^{3} divided by 4 can not leave 2 for a remainder, n being any whole number.
2. Prove that no number can be a square which has any (ne of the numbers $2,3,7,8$ for its last digit.
3. Prove the following properties of a square number .
(J). A square number can not terminate with an odd number of cyphers.
(2). Il a square number terminates with 5 , it must termina e, with 25.
(3). No "quare number can terminate with two figures the same, excent they be two ciphers, or two 4's.
4. If each of the quantities a, b, n, be a whole number, show that $\{2 a+n-1) b\}_{2}^{n}$ is always a whole number.
5. Show that $x^{5}-5 x^{3}+4 x$ is divisible oy 120 , when x is any positive whole number.

Sugcestion. $x^{5}-5 x^{3}+4 x=x^{3}\left(x^{2}-4\right)-x\left(x^{2}-4\right)$.
5. Prove that if any square number be divided by 12 , the remainder is a square number, that is, that it is 1,4 , or 9 .
6. Find the number of divisors of 1000 . Ans. 16.
7. Find the number of divisors of 2160 , and also their sum.

Ans. 40, and 7440.
8. Prove that the product of two different prime numbers can not he a square.

> SCALESOF NOTATION.

Art. 53. To explain the different systems of notation.
Def. Notation is the method of representing numbers by symbols; and it comprises different scales dependent upon the number of the symbols or figures employed.

In the common system of notation, each figure of any number increases in value in a tenfold ratio in procceding from right to left. Thus $543: 2$ is equal to $5000+400+30+2$

$$
\begin{aligned}
& =5 \times 1000+4 \times 100+3 \times 10+2 \\
& =5 \times 10^{3}+4 \times 10^{2}+3 \times 10^{1}+2
\end{aligned}
$$

The figures $5,4,3,2$ are called digits, and the number 10 , eccording to whose powers they proceed, is called the radix of the scale.

It is purely conventional that 10 should be the radix; the choice of it has probably arisen froun the circumstance of our
aaving ten fingers on the two hands. There may be any number of different scales, each of which has its own radix. When the radix is 2, the seale is called Benary; when 3, Ternary; when 4, Quaternary; when 5, Quinary; when 6, Senary; when 7, Septenary; when 8, Octary; when 9, Nonary; when 10, Denary; when 11, Undenary; when .2, Duodenary; and so on.

If 5432 represents a number in the Senary system, whose scale is 6 , it may be represented thus,

$$
\begin{aligned}
& 5 \times 6^{3}+4 \times 6^{2}+3 \times 6+2 ; \text { or, inverting the order, } \\
& 2+3 \times 6+4 \times 6^{2}+5 \times 6^{3}
\end{aligned}
$$

And generally, if the digits of a number be $a_{0}, a_{1}, a_{2}, a_{3}$, \&e., reckoning from right to left, and the radix be r, the number will be represented by

$$
a_{0}+a_{1} r+a_{2} r^{2}+a_{3} r^{3}+a_{4} r^{4}+, \& c
$$

Or, if there be n digits, by reversing the order of the terms, the number will be expressed by

$$
a_{n-1} r^{n-1}+a_{n-2} r^{n-2}+a_{n-3} r^{n-3}+\ldots . .+a_{1} r+a_{0}
$$

In any scale of Notation every digit is necessarily less than r, and the number of the digits, ineluding 0 , is equal to r. Also, in any number, the highest power of r is less by 1 than the nunhe" of digits.

Cor. Hence the digits ineluding the eipher, in the
Binary seale are 1,0 .
Ternary" " $1,2,0$.
Quaternary " $1,2,3,0$.
Quinary " 1,2,3,4,0. And sa on.
In the Duodenary seale it will be necessary to add two eharacters to represent ten and eleven; we, therefore, for ten put t for eloven e.
\therefore Duodenary digits are $1,2,3,4,5,6,7,8,9, t, e, 0$.
Art. 5县. To express a given number in any proposed scale
Let \mathbf{N} be the number, and r the radix of the seale
Then if $a_{0}, u_{1}, a_{2}, \& \mathcal{c}$., be the unknown digits

$$
\mathrm{N}=a_{0}+a_{1} r+a_{2} r^{2}+a_{3} r^{3}+, \& \varepsilon .
$$

If \mathbf{N} be divided by r, the remainder is if the quotient be divided by r, the rem. is if this quotient be divided by r, the rem. is

$$
\begin{aligned}
& a_{0}, \\
& u_{1} ; \\
& a_{2},
\end{aligned}
$$ and so on, till the last quotient is 0 . The last remainder will evidently be the figure in the highest place.

Therefore, all the digits $a_{0}, a_{1}, a_{2}, a_{3}, \mathscr{f}$., are the successive remainders obtained by dividing the given number \mathbf{N}, and the successive quotients, by r the radix of the proposed scale.

Ex. Transform 329 in the common scale, into the quinary scale whose radix is 5 .

5329				
5	65, 4 ; \therefore	1	,	$a_{0}=4$,
5	13, 0	$2^{\text {d }}$	"	$a_{1}=0$,
5	2,3	$3{ }^{\text {d }}$	"	$a_{2}=3$
	0,2	$4^{\text {th }}$	"	$a_{\text {s }}=2$.

\therefore the number required is 2304 .
To verify this result we must have

$$
4+0 \times 5+3 \times 5^{2}+2 \times 5^{3}=329, \text { which is found to }
$$

h. correct.

By the same method a number may be transformed from any given scale to any other of which the radix is given. But in performing the division, it must be recollected that the radix is not 10, but some other number. In general, it is best to change the number to the denary scale, and then from that to the proposed scale.

Ex. Transform 3256 frum a scale whose radix is 7 to a scale whose radix is 12 .
Observing that the digits in 3256 increase from right to left in a sevenfold ratio, the division by 12 is performed thus,
\therefore the requred number is 314 .
Or thus, 3256 in the septenary scale is

$$
\begin{aligned}
& 6+5 \times 7+2 \times 7^{2}+3 \times 7^{3}=1168 . \\
& 12) 1168 \\
& 12) \quad 97,4=a_{0}, \\
& 12) \frac{8,1}{0,8}=a_{1} . \quad \text { Ans. } 814 .
\end{aligned}
$$

Art. 55. In any scale of Notation whose radix is r, a number \mathbf{N} when divided by $r-1$, lerecs the same remainder as the sum of its diyits leaves when divided by $r-1$.

Por, let $\quad \mathrm{N}=a+b r+a r^{2}+d r^{3}+, \& c$. , $=b(r-1)+c\left(r^{2}-1\right)+d\left(r^{3}-1\right)+$, \&c.

$$
+a+b+c+d+, \& c . ;
$$

wnen since each of the factors $r-1, r^{2}-1, r^{3}-1, \& c$., is divisible by +-1 , (Algobra, Art. 83,) it follows that N and $a+b+c+d+$, \&c., when divided by $r-1$, will leave the same remainder.

Cor. In the common scale of notation since $r=10, r-1=9, ~$ 'herefore, every numher when divided hy 9 will leave the same remairoater as the sum of its digits when divided by 9.

From this property is derived the rule for testing the accuracy of the operation of Multiplication, by casting out the nines.

Let A and B contain a and b nines respectively, with the remainders r and r^{\prime}, so that

$$
\begin{aligned}
\mathrm{A} & =9 a+r, \mathrm{~B}=9 b+r^{\prime} ; \\
\text { then } \mathrm{AB} & =(9 a+r)\left(9 b+r^{\prime}\right), \\
& =81 a b+9 b r+9 a r^{\prime}+r r^{\prime}, \\
& =9\left(9 a b+b r+a r^{\prime}\right)+r r^{\prime} ;
\end{aligned}
$$

$\therefore A B$ and $r r^{\prime}$, when divided by 9 , leave the same remainder, that is, the sum of the digits of the product, when divided by 9 , leaves the same remainder, as the sum of those of the product of the partial remainders leaves when divided by 9 .

Ex. If $\mathrm{A}=327$, and $\mathrm{B}=248$; then $r=3$, and $r^{\prime}=5$;

$$
\text { also, } \mathrm{AB}=81096 \text {, and } r r^{\prime}=15 .
$$

By casting the nines out of the sum of the digits in each of these products, we find the remainder in both cases is the same, that is 6 .

Note. - This methad fails to detect an error in either of the following cases: (1), when one or more ciphers bave been omitted in the produc ${ }^{2}$; (2), when any of its digits are misplaced ; and (3), when the error is bqual to 9 , or any multiple of 9 .

EXAMPLES.

1 The number 4954 expressed in a different scale of notation beccmes 20305; what is the radix of the scale?

$$
\begin{gathered}
20305=2 \times r^{4}+0 \times r^{3}+3 \times r^{2}+0 \times r+5=2 r^{4}+3 r^{2}+5: \\
\therefore 2 r^{4}+3 r^{2}+5=4954 ; \\
\text { whence } r^{2}=19, \text { and } r=7 .
\end{gathered}
$$

2. Find the radix of the scale in which 95 is expressed by 137 Ans. 8.
3. Find the radix of the scale in which 803 is expressed by 30203 .

Ans. 4.
4. Find the radix of the scalc in which the double of 145 is expressed by the same digits in the same order. Ans. 15.
5. Express the common No. 5381 in the ternary and nonary scales.

Ans. 21101022 , and 7338.
6. Express the quinary No. 34402 in the quaternary scale. Ans. 212231.
7. Express the common Nos. 6587 and 3907 in the duodenary scale; and then find their product.

Ans. 398 e and 2317; product 8751215.
8. Multiply 24305 by 34120 in the senary scale. Ans. 1411103040.
9. Divide 95088918 by $t t 4$ in the duodenary scale.

Ans. 44 tee.
10. Extract the square root of 25400544 in the senary scale. Ans. 411%.
11. Out of the series of weights of $1 \mathrm{lb} ., 2 \mathrm{lbs} ., 4 \mathrm{lbs} ., 8 \mathrm{lbs}$., \&c., how many must be selected to weigh 153 lbs ?

Solution. 153 must be expressed in the binary scale, and it is $10011001=2^{7}+2^{4}+2^{3}+1=128+16+8+1$; that is, we must take the weights $1 \mathrm{lb} ., 8 \mathrm{lbs}$., 16 lbs. , and $1: 8 \mathrm{lbs}$.
12. What weights of the series $1 \mathrm{lb} ., 3 \mathrm{lhs}, 9 \mathrm{lbs}$, 27 lbs , \&c. must be selected to weigh 1319 lbs . ?

Solution. 1319 in the ternary scale is $1210212=36+2 \times 3$ $+3^{4}+2 \times 3^{2}+3+2$;

$$
\text { but }:=3-1 ; \therefore 2 \times 3^{5}=3^{5}(3-1)=3^{6}-3^{5} \text {; }
$$

$$
3^{6}+3^{6}=2 \times 3^{6}=3^{6}(3-1)=3^{7}-3^{6} ;
$$

$$
2 \times 3^{2}=3^{2}(3-1)=3^{3}-3^{2}
$$

$2=3-1$, and $3+2=3+3-1=2 \times 3-1,=3(3-1)-1=3^{2}-3$
-1 ; hence the expression becomes

$$
\begin{gathered}
3^{7}-3^{6}-3^{5}+3^{4}+3^{3}-3-1=3^{7}+3^{4}+3^{3}-\left(3^{6}+3^{5}+3+1\right) \\
=2187+81+27-(729+243+3+1)=1319 .
\end{gathered}
$$

Hence, the three weights 2187, 81, and 27 must be placed in one scale, and the four weights $729,243,3$, and 1 in the other.
13. Which of the weights $1 \mathrm{lb} ., 2 \mathrm{lbs}, 4 \mathrm{lbs} ., 8 \mathrm{lbs}$, must be selected to weigh 1719 lbs !

Ans. 1 lb., 2 lbs., 4 lbs., 16 lbs., 32 lbs., 128 lbs., $512 \mathrm{lbs} .$, 1024 Ibs.
14. Which of the weights $1 \mathrm{lb} ., 3 \mathrm{lbs} ., 9 \mathrm{lbs} ., \& c .$, must be selected to weigh 304 lbs !

Ans. Place $1 \mathrm{lb} ., 9 \mathrm{lbs} ., 81 \mathrm{lbs}$., and 243 lbs ., in one scale, and $3 \mathrm{lbs} .$, and 27 lbs. , in the other.

ALGEBRAIC PARADOX.

It is shown, (Algebra, Art. 137,) that 8 is the symbol of indetermination, and that it may represent any quantity whatever. A failure to observe this principle olten leads to absurd conclusions: thus, if we take

$$
\begin{aligned}
a & =x ; \\
a x & =x^{2} ; \\
a x-a^{2} & =x^{2}-a^{2} ; \\
x(x-a) & =(x+a)(x-a) ; \\
a & =x+a ; \\
\text { or } a & =2 a ; \\
\text { or } 1 & =2 .
\end{aligned}
$$

multiplying by x subtracting a^{2}
factoring
dividing by $x-a$

Or thus,

$$
6+21=6+21 ;
$$

$$
6-6=21-21 ;
$$

factoring,
dividing by $3-3$

$$
\begin{gathered}
2(3-3)=7(3-3) ; \\
2=7 .
\end{gathered}
$$

In these, and other similar examples that might be given, the fallacy is caused by the indirect introduction of the-indeterminate value 8 . Thus in the first example above, $a(x-a)=(x+a)(x-a)$, is the same as $\frac{a}{x+a}=\frac{x-a}{x-a}=0$ when $x=a$. Also, $2(3-3)$ $=7(3-3)$ is the same as $\frac{2}{7}=0$.

Hence it is evident, that no reliance can be placed on conclusions derived from any process of reasoning where 0_{0}^{0} has been introduced.

CONTENTA.

PageKet to Paht First 8 to 72区氏YTOPATTEEOND
Greatest Common Divisor 73
Least Common Multiple. 76
Algebraic Fractions 77
Equations of the First Degree. 84
Gencralization - 100, Negative Solutipns 103
Involution 105
Extraction of Roots 106
Radicals 108
Ynequalities 120
Equations of the Second Degree. 123
Ratio - 170. Variation 179
Arithmetical Progression - 181. Geometrical Progression 187
Problems in Progrussious 191
Permutations and Combinations 196
Binoraial Theorera \rightarrow integral exponent 202
ludeterminate Coéficients 204
Binomial Theorem - fractional exponent 209
Differential Method of Series 216
Piling of Balls - 219. Interpolation of Series 221
Beries - Infinita - Recurring - Reversion of 22 —2\%
Contiuued Frsctions. 223
Logarithmes 232
Exponential Equations 237
Interest and Annuities 242
General Theory of Equations. 24
Transformstion of Equations 21
Equal Roots $2 x$
Sturm's 'Theorem 257
Lesolution of Numerical Equations - Rational Roots 261
Horner's Method of Approximation. 272
Allditional Examples in Higher Equations. 283
Approximation by Double Position 286
Newton's Method of Approximotion. 292
Csrdan's Solution of Cubic Equations 293
Reaiprocal Equations-295. Binomial Equationg 298
APPEMDIR.
Indetorminate Annlysis 300
Diophantino Analysis. 317
Properties of Numbers. 332
Sales of Notation 338
Algebraio Paradox 944

RAY'S MATHEMATICS.

EMDRACING
A Thorough, Progressive, and Complete Course in Arithmetic, Algebra, and the IHigher Nathematics.

Ray's Primary Arithmetic.
Ray's Intellectual Arithmetic.
Ray's Practical Arithmetic.
Key to Ray's Practical.
Ray's Test Examples in Arith.

Ray's Higher Arithmetic. Key to Ray's Higher.
Ray's New Elementary Algebra.
Ray's New Higher Algebra.
Key to Ray's New Algebras.

Ray's Plane and Solid Geometry.
By Eli T. Tappan, A. M., Pres't Kenyon College. i2mo., cloth, 276 pp .
Ray's Geometry and Trigonometry.
By Elit T.Tarpan, A. M., Pres't K'enyon College. 8vo., sheep, 420 pp . Ray's Analytic Geometry.

By Geo. H. Howison, A. M., Prof. in Alass. Institute of Technology. Treatise on Analytic Geometry, especially as applied to the properties of Conics: including the Modern Methods of Abridged Notation. 8vo., sheep, 574 pp .

Ray's Elements of Astronomy.

My S. H. Peabody, A. M.. Prof. of Physics and Civil Eurgineering, Mirss. Agric. College. IIandsomely and profusely Illustrated. 8vo., sheep, 336 pp.
Ray's Suryeying and Navigation.
With a Pieliminary Treatise on Trigonometry and Mensuration. By A. Schuyler. Prof. of Applied Mathematics and Lugic in Baldzuin Unizersity. 8vo., sheep, 403 pp.
Ray's Differential and Integral Calculus.
Elements of the Infinitesimal Calculus, with numerous examples and applications to Analysis and Geometry. By Jas. G. Clark, A. M., Prof. in William fervell College. 8vo., sheep, 440 pp .

DESCRIPTIVE CIRCULARS ON APPLICATION.

The Elements of Physics.

By Sidney A. Norton, A. M., Prof. in Ohio Agricultural and Mechanical College, and author of Elements of Natural Philosopliy. For Academies and Common Schools. 12 mo , cloth. 286 jp . Illustrated.

Elements of Natural Philosophy.

By S. A. Norton, A. M., Professor of General and Applied Chemistry in Ohio Agricultural and Mechanical College. 360 illustrations. Problems and Copious Index.

Principles of Logic.

By A. Schuyler, M. A., Professor of Mathematics and Logic in Baldwin University. 12 mo , cloth. 168 pp , including Analysis of Contents.

Manual of English Rhetoric.

By A. Hepburn, Professor in Davidson College, N. C. The Principles and Rules of English Rhetoric, for the use of classes in High Schools and Colleges. 12 mo , cloth. 280 pp .

Manual of Physiology and Hygiene.

By R. T. Brown, M. D., late Chemist-in-Chief in the Department of Agriculture. Washington. D. C. 50 Lessons, adapted to the use of Common and High Schools. 288 pp . Illustrated.

Manual of the Constitution of the U. S.

Designed for the Instruction of American Youth in the Duties, Obligations, and Rights of Citizenship. By Israel Ward Andrews, D. D., President of Marietta College. 408 pp. Library edition, 8vo, full sheep. School edition, 12 mo , cloth.

Good Morals and Gentle Manners.

By Alex. M. Gow, A. M. A systematic Text-Book on Moral and Social Law. "Practical Ethics for the training of the true Guntleman and Lady." $12 m o$, cloth.

Manual of Ancient History.

From the earljest times to the fall of the Western Empire. By M. E. Thalieimer, formerly Teacher of History and Composition in Packer Collegiate Institute. 8vo, 378 pp. Handsomely illustrated with full-page engravings of Ancient Temples and other historical objects, charts of the principal cities, and accurate and finely executed double-page maps of the various comntries considered in the text. Complete Index and Pronouncing Vocabulary.

Mediæval and Modern History.

By the same author. 480 pp., full 8 vo . 12 beautiful and accurate double-page maps. Voluminous Index.

The above are companion volumes, uniform in size, binding, and price, the two together forming a valuable, concise, and complete History of the Wrold, from the earliest times to the present. They are published in durable and attractive style, and are adapted to the use of the general reader as well as students in History.

The following from The Nation, in regard to these volumes, has been the almost uniform wredict of the American press and leading educators:
"Thalheimer's Ancient History will be found the most serviceable work within the reach of our schools. It has, indeed, no rival worth mentioning." . . . "We do not hesitate to pronounce the Medireval and Modern History the best school text-book, covering the same ground, with which "c are acquainted."

Eclectic Historical Atlas.

Full 8vo, clnth. 18 double-page maps, accurately drawn and engraved. A hand-book for general readers and students in Ancient and Modern History.

A School History of the United States.

By W. H. Venable. I $2 \mathrm{mo}, 270 \mathrm{pp}$. Finely illustrated, and accompanied, with carefully drawn maps and charts.

Payne's School Supervision.

CHAPTERS ON SCHOOL SUPERVISION,

A Practical Treatise on Superintendence; Grading; Arranging Course of Study; Preparation and Use of Blanks, Records and Reports; Examinations for Promotions, etc.

By WM. H. PAYNE, A. M., Sup't Public Schools, Adrian, Mich.

CONTENTS.

Chapter I: The Nature and Value of Superintendence. Chapters II, III and IV: The Superintendent's Powers defined and his general duties discussed. Chapters V and VI: The Art of Grading. Chapter VII: Reports, Records and Blanks. Chapter VIII: Examinations.

This is the first and only work ever published on the art of school supervision.

It defines the mutual relations of the People, the Board, the Superintendent, and the Teacher.

It reduces the art of grading to an exact system.
It contains the most approved forms of blanks, records and reports, some of which emborly features entirely new.
It presents a rational system of examinations, exact in method and of great practical value.

It discusses the High School question from a point of view at once conservative and progressive.

It presents a body of public school doctrine, invaluable to Boards of Education, to Superintendents and Principals, to Teachers, and to the gencral reader.

It is a complete text-book for students in Universities, Colleges, and Normal Schools, who wish to make a preparation for the higher branches of public school work.

[^1]
HIGHER MATHEMATICS.

Ray's Plane and Solid Geometry, Ray's Geometry and Trigonometry, Ray's Analytic Geometry, Ray's Elsmsits of Astronomy, Ray's Surveying and Navigation,

Ray's Differential \& Integral Calculus, Evans's Elementary School Geometry, Schayler's Trigonometry \& Mensarat'n, Schnyler's Elements of Geometry.

ENGLISH LANGUAGE.

Harvey's Language Leseons, Harvey's Elsmsatary Grammar, Harvey's English Grammax,

Pinnoo's Primary Grammar, Pinneo's Analytical Grammar.

COMPOSITION 觡 RHETORIC.

Pinneo's English Teacher, Pinnoo's Guide to Composition, Pinneo's Exercises in False Syntax,

Pinnso's Parsing Exercises, Williams's Parssr's Manqal, Hepbarn's Englisl Rhetoric.

ECLECTIC GEOGRAPHIES.

Eclectic Primary Ggography, No. 1.
Eclectic Intermediate Geography, No. 2.
Eclectic School Geography, No. 3.

HISTORY.

Venabls's United States History, Eclectio Historioal Atlas,

Thalheimer's History of England, Thalhaimer's Auciant History, Thalheimer's Medixval \& ModernHist'y,

ECLECTIC PENMANSHIP.

Eclectio Elementary Course, 3 No's, Eclectio Oopy-Books, 9 No's, Ecleotio Exaroiss-Book,

Eclectio Writing-Cards, Ecleotio Hand-Book of Penmanship, Eoleotic Copy-Book Covers,

ECLECTIC EDUCATIONAL SERIES.

SCHOOL MUSIC.

Philip Phillips's Day-School Singar, Young Singer, Part I.

Young Singsr, Part II. Yonng Singer's Mannal.

ELOCUTION 䚚 DIALOGUES.

MoGuffey's Juvenile Speaker, MoGnffey's Eclectic Speaker, Kidd's Elocntion and Vocal Caltars,

Vsnahle's School Stags,
Vsnabls's Amatenr Actor,
Venahle's Dramas \& Dramatio Scenes.

SPECIAL READING.

Cole's Institnte Rsadsr, Kidd's Rhetorical Reader, Hsmans Young Ladiss' Reader,

McGuffsy's Rhetorical Readsr, McGuffey's High School Reader.

SCIENCE.

Norton's Elements of Phyaics, Norton's Natnral Philosophy, Schayler's Principles of Logic,

Brown's Physiology and Hygiens, Andrews's Mannal of the Constitation, Gow's Good Morals \& Gentle Mannsrs.

LANGUAGES.

Eclectic Classical Series:
Bartholomsw's Latin Grammar, Bartholomsw's Latin Gradual, Bartholomsw's Casar,

> Duffet's Frenoh Method, Part I. Daffet's French Method, Part IL. Kisy to Doffet's French Method, Doffitt's Franch Literature.

TEACHERS' LIBRARY.

Krasi's Lifs of Pestalozzi,
Hailman's Kindergarten Oulture, Hailman's History of Pedagogy, The Examiner, or Tsachsr's Aid,

Payne's School Snpervision, Smart's Mannal of Free Gymnastics, Objeot Lessons, by Lilienthal \& Allyn,

SCHOOL RECORDS, \&c.

White's Common School Rsgister, White's Graded School Register, White's Teachsrs' Class Record,

White's Papils' Daily Record, Payne's Eclectic School Blanks, Eclectic School Pens.

[^0]: 137 Walnut St.
 CINCINNATI.
 $\{28$ Bond St. $\left\{\begin{array}{l}28 \text { BEW YORK. } \\ \text { NEW }\end{array}\right.$ VAN ANTWERP, BRAGG \& CO.

[^1]: VAN ANTWERP, BRAGG \& CO., Publishers of ECLECTIC EDUCATIONAL SERIES, CKICNAN:1TT AND MEU YORK:

